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Abstract—A multi-objective optimization problem involves a
nubmer of objective functions to be maximized or minimized,
and no single solution exists for the problem because there
is no solution that simultaneously satisfies all of the objective
functions. Therefore, a set of Pareto-optimal solutions, which
are non-dominated solutions for the problem, is defined for the
multi-objective optimization problem.

In the present paper, we consider multi-objective knapsack
problem, which is one of well-known multi-objective optimization
problems, and propose an optimization algorithm based on a
strawberry algorithm (SBA). The experimental results show that
the proposed algorithm obtains a better set of Pareto solutions
than the existing algorithm.

Index Terms—multi-objective optimization, knapsack problem,
strawberry algorithm

I. INTRODUCTION

A multi-objective optimization problem involves a number
of objective functions to be maximized or minimized. The
multi-objective optimization problem has been considered in
a number of fields, such as economics or engineering, and the
most optimal solution is needed for the practical problems.

However, there is no single solution for the multi-objective
optimization problem because no solution satisfies all of ob-
jectives simultaneously. Since there exists a trade-off between
two or more conflicting objective functions, the non-dominated
solutions, which are not inferior to the other solutions in all
of the objective functions, are needed for the multi-objective
optimization problem.

The non-dominated solution is called Pareto optimal so-
lution [1], and a set of maximal Pareto optimal solutions
is considered as an optimal solution for the multi-objective
optimization problem. Since the problem for computing the
maximal Pareto optimal solutions for the multi-objective opti-
mization problem is generally computationally hard, a number
of approximation algorithms [2], [3], [6] have been proposed
for the problem.

As an example of the multi-objective optimization prob-
lems, a number of approximation algorithms have proposed
for a multi-objective 0-1 knapsack problem. A standard 0-1
knapsack problem [4] is generally given with a knapsack and
multiple items, and value and weight are defined for each item.
On the other hand, there exists a number of knapsacks in the

multi-objective 0-1 knapsack problem, and values and weights
of items are defined for each knapsack.

A number of approximation algorithms have been pro-
posed for the multi-objective knapsack problem. Deb et. al.
[5] proposed an approximation algorithm based on genetic
approach. In addition, some algorithms have been proposed
based on a group intelligence optimizations, such as bee
colony optimization [6] and particle swarm optimization and
a firefly algorithm [7].

In the present paper, we propose an approximation algo-
rithm for the multi-objective 0-1 knapsack problem using
strawberry algorithm (SBA) [9]. The strawberry optimization
is an optimization method based on the ecology of strawberry.
The strawberry develops runners and roots for searching water
resources and minerals, and the runners and roots are used for
global and local searches in the optimization method.

We implement our proposed algorithm and an existing al-
gorithm [5] in experimental environment, and evaluate validity
of the proposed algorithm. the experimental results show that
our proposed algorithm obtains a better set of Pareto solutions
than the existing algorithm.

II. PRELIMINARIES

A. Multi-objective optimization problem

In this section, we first define the multi-objective opti-
mization problem. We assume that an instance of the prob-
lem is k-dimensional decision vector x. The multi-objective
optimization problem consists of a set of n objective func-
tions {f0(x), f1(x), · · · , fn−1(x)} and a set of k constraint
functions {g0(x), g1(x), · · · , gk−1(x)}. Then, each objective
function is defined as image from x to n objective function
vector y. The definition is mathematically formulated as
follows.

max /min y = {y0, y1, ..., yn−1} = {f0 (x) , f1 (x) , ..., fn−1 (x)}
such that x = (x0, x1, ..., xm−1) ∈ X,

X = {x | ∀i ∈ {0, 1, ..., k − 1}, gi (x) ≤ 0}

In the above definition, X is called as a set of feasible
solutions for the problem.

Since no solution satisfies all of the objective functions in
the multi-objective optimization problem, a solution that is not
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Fig. 1. An example of Hypervolume indicator

inferior to the other solutions is needed for the multi-objective
problem. The solution is called Pareto optimal solution, and
we first define the dominance relationship of the solutions for
defining the Pareto-optimal solution.

We assume that x1 and x2 are two feasible solutions for
the problem and all objective functions are maximized. Then,
x2 dominates x1 if and only if the following two conditions
holds.

∀i ∈ {0, 1, ..., n− 1}, fi (x1) ≤ fi (x2)

∃j ∈ {0, 1, ..., n− 1}, fj (x1) < fj (x2)

In this paper, x1 ≺ x2 denotes x2 dominates x1,
In addition, a feasible solution x is called Pareto optimal

if and only if there is no feasible solution x′ ∈ X such that
x ≺ x′. Since the Pareto-optimal solution is a solution that
cannot be improved in any of the objective function without
degrading one of the other functions, a maximal set of the
Pareto optimal solution is considered as an optimal solution
for the multi-objective optimization problem.

There are various metrics for a set of Pareto-optimal so-
lutions for the multi-objective optimization problem. In the
paper, we evaluate a set of the Pareto-optimal solutions using
hypervolume (HV) indicator [8].

Let vx be the volume of the hypercube created by Pareto
optimal solution x and the reference point r. The hypervolume
V for a set of Pareto optimal solutions is defined as follows.

V =
⋃
x∈X

vx

Fig. 1 shows an example of the hypervolume indica-
tor in case that the problem is bi-objective. Let X =
{x1,x2,x3,x4} be a set of Pareto optimal solutions. The
hypervolume for X is defined as an union, which is an
gray-shaded area in the figure, of rectangular regions whose
opposite vertices are (f1(xi), f2(xi)) and a reference point r.

III. STRAWBERRY OPTIMIZATION ALGORITHM FOR THE
MULTI-OBJECTIVE KNAPSACK PROBLEM

In this section, we first show definition of the multi-
objective 0-1 knapsack problem, which is a well-known multi-
objective optimization problem. We next explain an outline

of the strawberry algorithm, and finally show our strawberry
optimization algorithm for the knapsack problem.

A. The multi-objective 0-1 knapsack problem
An input of the multi-objective 0-1 knapsack problem is

given as follows.
• n knapsacks whose capacities are c0, c1, · · · cn−1.
• m items stored in the knapsacks. vi,j and wi,j denote

value and weight of item j for knapsack i, respectively.
Let x = (x0, x1, · · · , xm−1) are m-dimensional Boolean

vector. Then, the multi-objective 0-1 knapsack problem is
formulated as follows.

max y = {f0 (x) , f1 (x) , ..., fn−1 (x)}

fi(x) =

m−1∑
j=0

pi,jxj

such that gi (x) =

m−1∑
j=0

wi,jxj

− ci ≤ 0

In the above expression, xj = 1 denotes item j is stored in
the knapsacks.

B. An outline of strawberry algorithm
Strawberry algorithm (SBA) is an optimization method

based on ecology of strawberry. Strawberry develop runners
and roots for searching water resources and minerals. A
function of the runner is to search for resources away from a
parent turnip, and the function allows the strawberry to breed
efficiently. On the other hand, the root of the strawberry is used
to search and absorb nearby nutrition. Using the feature of the
strawberry, global and local searches can be simultaneously
performed for tentative solutions.

We now outline the strawberry algorithm. The algorithm
consists of an initial part and a repeated part. The repeated part
is executed repeatedly by the number of a given parameter.

Initial part:
We assume there are l parent plants at the beginning of the

algorithm. Each parent plant stores an initial solution obtained
by a trivial algorithm. We assume a set of parent plants is
T = {t0, t1, · · · , tl−1} and each tp stores an initial solution
xp(0).

Repeated part:
Two m-dimensional Boolean vectors drunner and droot,

which denote distances from the parent plant, are generated.
We assume that drunner = (ru0, ru1, · · · rum−1) and droot =
(ro0, ro1, · · · rom−1), and two vectors are used for global and
local search, respectively. Distances for the two vectors are
denoted by the numbers of value “1” in the two Boolean
vectors.

Let xp(q) = (x0, x1, · · · , xm−1) a solution stored in tp.
Then, two tentative solutions, y2p and y2p+1, are created using
drunner and droot for each xp(q) as follows.

y2p = (x0 ⊕ ro0, x1 ⊕ ro1, · · · , xm−1 ⊕ rom−1)
y2p+1 = (x0 ⊕ ru0, x1 ⊕ ru1, · · · , xm−1 ⊕ rum−1)
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In other words, each xk is inverted if rok or ruk is 1, and
two results of EX-OR between xp(q) and two vectors, drunner
and droot are modified solutions with global and local search,
respectively.

Since two tentative solutions are created for each parent
plant, 2l tentative solutions y0, y1, · · · , y2l−1 are obtained after
the above step.

Finally, 2l tentative solutions are sorted according to evalu-
ation values of the solutions, and l best solutions are selected
as x0(q+1), x1(q+1), · · · , xl−1(q+1), which denote l parent
plants in the next step.

C. SBA for multi-objective knapsack problem
We now propose an optimization algorithm for the multi-

objective knapsack problem using SBA. In the optimization
algorithm using SBA, infeasible solution may be created in
a repeated part of SBA. In case of the infeasible folution, a
number of items are removed from a tentative solution using
greedy method.

We show our proposed algorithm for the multi-objective
knapsack problem using SBA. The algorithm consists of three
steps.

Algorithm: an algorithm for multi-objective 0-1 knapsack
problem using SBA

Step 1: For each parent plant tp (0 ≤ p ≤ l − 1),
generate m-dimensional Boolean vector xp(0) =
(x0, x1, · · · , xm−1) as an initial solution. Each xk
is set to 0 or 1 with probability 1

2 . In addition, set
P = φ. (P is a set of Pareto optimal solution.)

Step 2: The following sub-steps are repeated G times. (G is
a parameter that denotes the number of generations.)

(2-1) Two m-dimensional Boolean vectors droot and
drunner, which denote distances from tentative solu-
tion are generated. In these two vectors, the number
and positions of value ”1” are decided by an uniform
distribution. The range of numbers of ”1” is [1, 3] for
droot and [m2 ,m] for drunner.

(2-2) For each parent plant tp (0 ≤ p ≤ l−1), two tentative
solutions, y2p and y2p+1, are created using drunner,
droot and xp(q).

y2p−1 = (x0 ⊕ ro0, x1 ⊕ ro1, · · · , xm−1 ⊕ rom−1)
y2p = (x0 ⊕ ru0, x1 ⊕ ru1, · · · , xm−1 ⊕ rum−1)

(2-3) In case that y2p or y2p+1 is infeasible solution,
that is, one of constraints for the knapsack is not
satisfied, the following sub-steps are repeated until
all constraints are satisfied.

(2-3-1) For each j (0 ≤ j ≤ m− 1), compute sj
as follows.

sj =

n−1∑
i=0

pk,j
wk,j

(2-3-2) Select xj that satisfies xj = 1 and the
following condition.

sj = min{sk | xk = 1, 0 ≤ k ≤ m− 1}

Fig. 2. Pareto optimal solutions of the algorithms

(2-3-2) Set xj = 0.
(2-4) Set P ′ = P ∪ {y0, y1, · · · , y2l−1} and r = 1.

Then, compute Pareto rank of each solution in P ′

by repeating the following sub-steps until P ′ = φ.
(2-4-1) Select Pareto optimal solutions in P ′, and

set Pareto ranks of the selected solutions to
r.

(2-4-2) Remove the selected solutions from P ′, and
set r = r + 1.

(2-5) Sort all solutions in P ∪{y0, y1, · · · , y2l−1} accord-
ing to the computed Pareto ranks. Then, select l best
solutions as parent plant t0, t1, · · · , tl−1. In addition,
all solutions whose rank is 1 is selected as a set of
Pareto optimal solutions P .

Step 3: Output P as a set of Pareto optimal solutions.

IV. EXPERIMENTAL RESULTS

Our proposed algorithm and an existing algorithm [5] are
implemented using C++, and we compare Pareto optimal
solutions and hypervolume indicators.

First, we describe details of the multi-objective 0-1 knap-
sack problem. The values of the variables used in the simula-
tion are as follows.

• The number of knapsacks n: 2
• The number of items m: 500
• A value of item pi,j (1 ≤ i ≤ n, 1 ≤ j ≤ m):

a randomly generated integer in [10, 100]
• A weight of item wi,j (1 ≤ i ≤ n, 1 ≤ j ≤ m):

a randomly generated integer in [10,100]
• A capacity of a knapsack ci (1 ≤ i ≤ n):
ci =

1
2

∑m
j=1 wi,j

Fig. 2 shows a part of our experimental results. Pareto opti-
mal solutions obtained by the proposed algorithm is distributed
in wider range than the solutions obtained by the existing
algorithm.

Table I shows hypervolumes of the algorithms. Since the
value of the proposed algorithm is better than the existing
algorithm, our proposed algorithm obtains a better set of Pareto
solutions than the existing algorithm.
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TABLE I
HYPERVOLUMES OF THE ALGORITHMS

The proposed algorithm The existing algorithm [5]
3.89× 108 3.80× 108

V. CONCLUSIONS

In this paper, we proposed an approximation algorithm for
the multi-objective 0-1 knapsack problem using SBA. We
compared our proposed algorithm and an existing algorithm
in experimental environment, and showed validity of the pro-
posed algorithm from the viewpoint of hypervolume indicator.

As our future research, we are considering improvement of
our proposed algorithm for distribution of the Pareto optimal
solutions. We also considering reduction of the execution time
of the proposed algorithm.
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