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Abstract— Quantum computing has the potential to 
outperform classical computers, and is expected to play an active 
role in various fields. On quantum machine learning, it is difficult 
to learn only on quantum computing. Classical-quantum hybrid 
algorithms are proposed in recent years. Classical computer is 
used for calculation of parameter tuning in quantum circuit. In 
this paper, we propose a backpropagation algorithm that can 
efficiently calculate gradient in optimization of parameter in 
quantum circuit, which outperforms the current parameter search 
algorithm while presents the same or even higher accuracy. 

Keywords—quantum computing, machine learning, error 
backpropagation, gradient 

I. INTRODUCTION 
There is the famous Di Vincenzo criterion for the question 

"What are the standards for quantum computers" or "What are 
the elements necessary for a" true "quantum computer?" [1]. Di 
Vincenzo criterion contains seven criteria and each one is being 
steadily cleared by the development of technology in recent 
years, for example, qubits and quantum gates have increased 
from tens to thousands with the development of superconducting 
technology, spin control technology, and microwave resonance 
technology. The Di Vincenzo criterion is important for all items, 
but the most difficult thing from the results of recent research 
and development is the third criterion, “Coherence time 
continues until quantum computation is completed”. This 
condition has a deep meaning, and it can be said that it is a life-
and-death problem of a quantum computer that is questioned by 
the completeness of physical conditions under which quantum 
superposition and quantum entanglement are the key elements 
of a quantum computer.  

Quantum coherence refers to a coordinated and precise 
movement of qubits. However, in reality, qubits are very fragile 
and are subject to errors due to the phenomenon of decoherence. 
This is the biggest reason why it is difficult to realize quantum 
computers. It is difficult to precisely control the quantum state 

such as spin as expected, and bit flip and phase inversion occur 
due to the fluctuation in surrounding environment and noise. 
Such an error is called a quantum error. The number of quantum 
errors that potentially exist or the number of quantum errors that 
occur in a stochastic normal qubit is an important parameter that 
affects quantum computers, and has been actively studied in 
recent years. Quantum computer which possess considerable 
quantum errors, is called Noisy-Intermediate Scale Quantum 
computer (NISQ)[2]. Under the NISQ circumstance, it is 
necessary to develop fault-tolerant quantum computation 
methods that provide error resilience. There are two solutions to 
this problem. One is to perform quantum computing while 
correcting quantum errors in the presence of errors. Another 
approach is to develop hybrid quantum-classical algorithm 
which complete the quantum computing before the quantum 
error becomes fatal and shift the rest of task to classical 
computer when severe quantum error occurs. The latter 
approach has triggered a lot of algorithm such as quantum 
approximation optimization algorithm (QAOA) [3] and 
variation quantum eigensolver (VQE) [4] and many others [5]. 

A hybrid quantum-classical algorithm needs to build an efficient 
simulation channel to organically connect ‘the quantum and the 
classic’. In QAOA, VQE or other hybrid NISQ algorithm, there 
exists a challenging task to optimize the model parameter. In a 
complete classical approach, the optimal parameter search is 
usually categorized as an mathematical optimization problem, 
where various approaches bother gradient based and non-
gradient based have been widely utilized. For the quantum 
circuit learning, so far most of parameter searching algorithm 
are based on non-gradient ones such as Nelder–Mead method 
[6 ], SPSA [7] and most recently a difference method[8].  

In this article, we propose an error backpropagation 
algorithm on quantum circuit learning to efficiently calculate the 
gradient required in parameter optimization. As mentioned 
above, current approaches to solve the parameter search is based 
on gradient free, which inevitably causes the execution time to 
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increase significantly as the number of quantum gates using in 
the quantum circuit increases. The error backpropagation 
method is an efficient method for calculating gradients in the 
field of deep neural network based machine learning when 
updating parameters using the gradient descent method [9]. By 
carefully examining the simulation process of a quantum circuit, 
if the input quantum state is |𝜓#$⟩ and a certain quantum gate 
𝑈(𝜃) is applied, the output state |𝜓*+,⟩ can be expressed by the 
dot product of the input state and quantum gate.  

|𝜓*+,⟩ = 𝑈(𝜃)|𝜓#$⟩ 
On the other hand, the calculation process of a fully connected 
neural network without activation function can be written as 
𝐘 = 𝐖 ∙ 𝐗, where 𝐗 is the input vector, 𝐖 is the weight matrix 
of network, and 𝐘 is the output. It can be seen that the quantum 
gate 𝑈(𝜃) is very similar to the network weight matrix 𝐖. This 
shows that backpropagation algorithms that is used for deep 
neural networks can be modified and be used in the simulation 
process of quantum circuit learning. 

  The method we proposed makes it possible to greatly 
reduce the time for gradient calculation when the number of 
qubits is increased or number of gates is increased. As a result, 
it is expected that using gradient based backpropagation in the 
NISQ hybrid algorithm facilitate parameter search when many 
qubits and deeper circuits are deployed. 

II. QUANTUM BACKPROPAGATION ALGORITHM 
The backpropagation method uses chain rule of a partial 

differential to propagate the gradient back from the network 
output and calculate the gradient of the weights. Owing to the 
chain rule, the backpropagation can be done only at the input / 
output relationship at the computation cost of a node. In the 
simulation of the quantum computing, the quantum state |𝜓⟩ 
and the quantum gates are represented by complex value. 
Hereafter, we will show the derivation details regarding the 
quantum backpropagation in complex valued vector space. 

When the input of n qubits is |𝜓#$⟩ and the quantum circuit 
parameter network 𝑊(𝜃) is applied, the output |𝜓*+,⟩ can be 
expressed as: 

	𝑊(𝜃)|𝜓#$⟩ 									= 4 𝑐6
7|𝑗⟩

9:;<

7=>

																																		

= |𝜓*+,⟩																										(1) 
where 𝑐6

7  is the probability amplitude of state |𝑗⟩ and @𝑐6
7@
9
=

𝑝6
7  is the observation probability of state |𝑗⟩. If loss function 𝐿 

can be expressed by using observation probability determined 
by quantum measurement, the gradient of the learning 
parameter can be described as:  
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𝜕𝑝6
7

𝜕𝜃 =
𝜕𝑐6

7𝑐6
EF

𝜕𝜃 				= 						 𝑐6
EF 𝜕𝑐6

7

𝜕𝜃 + 𝑐6
7 𝜕𝑐6

EF

𝜕𝜃 										(4) 

Formula(4) can be further expanded as:  
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	Formula (5) contains complex value but can be nicely summed 
out as real value shown below: 
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 can be obtained by error backpropagation in the 

same way as the conventional calculation used in deep neural 
network [9]. Meanwhile, one advantage of the proposed method 
is that quantum gate matrix containing complex value is 
converted to real value. Gradient of the loss function with 
respect to 𝜃 can be obtained from the real part of the value of 
the complex vector space calculated by the conventional 
backpropagation. For more detailed derivation regarding 
backpropagation at each node using a computation graph. Is 
given in the Appendix for reference.  
 

III. EXPERIMENT 
Next we conducted the experiment with the supervised 

learning tasks including both regression and classification 
problems to verify the validity of proposed quantum 
backpropagation algorithm.  

The quantum circuit consists of a unitary input gate 𝑈#$(𝒙) 

that creates an input state from classical input data 𝒙  and a 
unitary gate 𝑊(𝜽)  with parameters 𝜽 . We use 𝑈#$(𝒙) =
⨂7=>
$;<𝑅]^𝜃7]_𝑅`^𝜃7`_  as proposed in reference [8] a unitary 

input gate. (Fig. 1)  

 

Fig.1 a unitary input gate 𝑈#$(𝒙) 
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We use 𝑊(𝜽) = 𝑈abc
(d)(𝜃d)𝑈efg ⋯𝑈abc

(<)(𝜃<)𝑈efg𝑈abc
(>)(𝜃>)  as 

proposed in reference [10]  𝑈abc
(i)(𝜃i) = ⨂7=>

$;<𝑈^𝜃7,i_. 𝑈efg is 
entangling gates. We use controlled-Z gates (CZ) as 𝑈efg.  The 
overall quantum circuit is shown in Fig.2: 

 

A. Regression 
In regression tasks, the circuit parameters were set to n = 3 

and l = 3, that is to say, the number of qubit is 3 and depth of 
circuit is 4.  The expected value of observable Z for the first 
qubit was obtained from the output state |𝜓*+,⟩ of the circuit.  
One-dimensional data 𝑥 is input by setting circuit parameters as 

	𝜃] = cos;< 𝑥9 
𝜃` = sin;< 𝑥 

The target function 𝑓(𝑥) was regressed with the output of 
twice of the Z expected value. We performed nonlinear 
regression tasks to verify the effectiveness of the proposed 
approach. A conventional least square loss function was 
adopted in the current regression tasks.  

𝐿 =
1
2
|2〈𝑍〉 − 𝑓(𝑥)|9																							(6) 

And the first deriviation becomes: 

𝛿 =
𝜕𝐿
𝜕𝑝 =

𝜕𝐿
𝜕〈𝑍〉

𝜕〈𝑍〉
𝜕𝑝 = ^2〈𝑍〉 − 𝑓(𝑥)_	

𝜕〈𝑍〉
𝜕𝑝 																	(7) 

Here, 〈𝑍〉 = 1 ∙ 𝑝> + (−1) ∙ 𝑝<. The error 𝛿 is the one for the 
backpropagation. 

Before conducting the nonlinear regression, we have 
confirmed the validity of the proposed algorithm for linear 
regression task, which is not shown here but presented in the 
Appendix part for reference.  In Fig.3(a) and (b) shows the two 
nonlinear task  𝑓<(𝑥) = 𝑥9, which represent a single concave 
profile nonlinear problem, and 𝑓9(𝑥) = sin 𝑥, which represents 
multi-concave-convex wavy profile for more complex 

problems. The noise was also added into the target function for 
realistic purpose and the number of training data was chosen as 
100 in circuit learning for the two target functions.  It can be 
clearly seen the quantum circuit based on error backpropagation 
performs very well in the regression task.  At the initial learning 
stage, the results show large deviation from the target function 
and at the final leaning stage the regressed curve catches the 
main feature of the training data and shows very reasonable 
fitted curve. It is noticed at the Fig.3(a), the fitted curve showed 
deviation at the left edge of the regression profile. This 
deviation is considered as lack of training data at the boundary 
and can be either improved by increasing the number of training 
data or adding regularization term in the loss function, which 
are regularly used in the conventional machine learning tasks. 

B. Classification 
 In the classification problem, we have modified the quantum 
circuit architecture to accommodate increased number of 
parameters for both qubit and circuit depth. The initial parameter 
set for classification problem were set for qubit n=4 and l=6 
(number of layer is 7). Again, here we show only the results for 
nonlinear classification problem. The example of bbinary 
classification of the two-dimensional data are shown in Fig.7. 
Here the dataset was prepared by referring to the similar dataset 

Fig. 2 (i) 𝑊(𝜽) is the variational form. l denotes depth 
of quantum circuit. (ii) 𝑈efg  gate is composed of CZ 
gates from qubit j to qubit (j+1) mod n, j ∈ 
{0, … , 𝑛 − 1}. 

 

(a) 

(b) 

Fig. 3 (a)  Regression results for target function 𝑓<(𝑥) =
𝑥9 + 0.015𝑁(0,1) ,  (b) Regression results for target 
function 𝑓<(𝑥) = 𝑠𝑖𝑛	𝑥 + 0.015𝑁(0,1), 
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from scikit-learn[11]. We consider two representative nonlinear 
examples: one is dataset of make_circles and another one is 
make_moons and we consider the make_moons possess more 
complicated nonlinear feature than make_circles.                            

For the output state |𝜓*+,⟩, we calculated the expected value 
〈𝑍<〉	and	〈𝑍9〉 of observable Z using the first and second qubits. 
A softmax function was applied to the output for 〈𝑍<〉	and	〈𝑍9〉 
and continuous probability between 0 and 1 is thus obtained. For  

the training purpose, a typical cross-entropy loss function was 
adopted to generate the error and was further backpropagated to 
update the learning parameter.   

𝐿 = 𝑑# log[𝑝] + (1 − 𝑑#) log[1 − 𝑝]									(8) 
The cross-entropy formula looks complicated but its first 
derivative upon probability 𝑝  reduced to the form of error 
similar to the regression.  

𝛿 =
𝜕𝐿
𝜕𝑝 = 𝑝 − 𝑑#																																											(9) 

For the proof of concept, limited number of training data was 
set as 200 and half of the data was labeled as ‘0’ , the rest half 
of data was labeled as ‘1’.  For comparison we have also applied 
the classical support vector machine (SVM), a toolkit attached 
in the scikit-learn package to the same datasets. The results 
from SVM are served as a rigorous reference for the validity 
verification of the proposed approach.  

Two-dimensional data 𝒙 is input by setting circuit parameters 
as: 
 

𝜃9#] = cos;< 𝑥<9,  

𝜃9#` = sin;< 𝑥< or  

𝜃9#;<] = cos;< 𝑥99,  

𝜃9#;<` = sin;< 𝑥9.  

(𝑖 = 0, 1, … , 𝑛 − 1) 
    Fig.4 shows the learnt results for two non-linear classification 
tasks. Fig.4 (a) and (e) show 2-dimensional training data with 
value ranged between (-1,1) were chosen as the training dataset. 
Here the noise was not added for simplicity and the training data 
with added noise will be presented elsewhere showing the 
similar tendency as reported here. Fig.4(b) shows the test results 
based on the parameter using the dataset from Fig.4(a). A 
multicolored contour-line like classification plane was found in 
Fig.4(b). The multicolored value corresponding to the 
continuous output of the probability from the sofmax function.  
a typical two-valued region can be easily determined by taking 
the median of the continuous probability as the classification 
boundary. This is shown in the Fig.4(b) with line colored by pink. 
Reference results simulated using scikit-learn-SVM is shown in 
Fig.4(c). Since SVM simulation treats the binary target 
discretely, the output shows exact two value based colormap of 
the test results. It can be easily seen here that the results shown 

Fig. 4  Quantum circuit learning results using error backpropagation for nonlinear binary classification problem with 4 qubit and 7 layer 
depth:   (a)  Training data set for make_circles, red for label ‘0’ and blue for label ‘1’ ; (b) Test results using the learnt parameter using 
the 200 make_circles dataset, pink line corresponding to the median boundary of the continuous probability;  (c) scikit-learn-SVM 
classification results using the learnt support vectors; (d) Training data set for make_moons, red for label ‘0’ and blue for label ‘1’ ;; (e) 
Test results using the learnt parameter under the 200 make_moon dataset, pink line corresponding to the median boundary of the 
continuous probability;    (f) scikit-learn-SVM classification results using the learnt support vectors. 

(a) (b) 

(d) 
(e) 

(c) 

(f) 
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in Fig.4(b) is in great consistence with the SVM results.  
Especially the location of median boundary (pink line) 
corresponds exactly to the SVM results.  For the dataset of 
make_moons, the situation become more complicated due to the 
increased nonlinearity in the training data. Fig.4(d), (e) and (f) 
showed the same simulation sequence as the data of 
make_circles.   However, it is found both the results from error 
backpropagation and SVM showed misclassification. The 
classification mistake is usually occurred near the terminal edge 
area where the label ‘0’ and label ‘1’ overlapped with each other. 
Taking a closer look at the test results shown in Fig.4(e) and (f), 
it can be found that the misclassification presented in a different 
manner. For quantum circuit learning, the misclassification 
occurs mostly at the left side of label ‘0’ in the overlapping area. 
For SVM, the misclassification is roughly equally distributed for 
both label ‘0’ and label ‘1’ indicating the intrinsic difference 
between these two simulation algorithms. Further investigation 
aiming at improving the test accuracy for the make_moons data 
were also conducted and the results are shown in Fig.5.  We 
consider that one of reason for misclassification occurred in 
Fig.4(e) would be attributed to the limited representation ability 
due to limited depth of quantum circuit. This can be confirmed 
from Fig.5 where the quantum circuit with varied layer thickness 
ranging from 4, 7 and 10 are given. It can be seen that the by, 4 
layer of circuit showed almost linear separation plane, but with 
the increase of the circuit layer thickness, the classification 
boundary (separation plane) becomes more nonlinear. The layer 
thickness of 10 showed great improvement of separation plane   
to reflect the hidden ‘moon’ feature of the training data. It should 
be mentioned here that the number of training data is kept at 200. 
It is apparent that classification accuracy will dramatically 
increase with increase of number of training data. Here we 
intentionally reduced the number for training data set so as to 
magnify the effect from quantum circuit depth. 

C. Computation efficiency. 
  After having confirmed the validity of the proposed 
backpropagation on various regression and classification 
problem, we will show one great advantage of using 
backpropagation to perform parameter optimization over other 
approaches. It has been rigorously in deep neural network based 
machine learning field that the error backpropagation method 
shown several magnitude faster than finite difference method. In 
this work, we have also conducted benchmark test to verify 

where there is decisive advantage of using backpropagation 
algorithm in quantum circuit learning. Fig.6 shows the 
computation cost comparison among three methods: a finite 
difference method proposed in reference [8], the popular Nelder-
Mead method from SciPy, which is mostly widely used in 
current quantum circuit leaning field and the proposed method 
based on backpropagation.  This comparison was performed 
under 4 qubit. The horizontal axis is the circuit depth 𝑙, and the 
vertical axis is the execution time[sec] per 100 iterations. The 
number of parameters corresponding to the circuit depth 𝑙  is 
given as : 

𝑁U�����,�� = (2	𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛	𝑔𝑎𝑡𝑒𝑠) × (4𝑞𝑢𝑏𝑖𝑡) × (𝑙 + 1). 

    We implemented the three method on the same make_moons 
dataset and record the computation time costed per 100 
iterations. The depth of quantum circuit is varied from 5 to 20 at 
the interval of 5. It can be clearly seen there is dramatic 
difference in computation time costed for 100 iteration learning 
steps. Finite-difference method showed the worst computation 

(a) (b) (c) 

Fig. 5  Effect of quantum circuit depth on the classification accuracy.    (a)  4 layer of  quantum  circuit with 4 qubits. (b) 7 layer 
of  quantum  circuit with 4 qubits ; (c) 10 layer of  quantum  circuit with 4 qubits 

Fig. 6  Comparison  of  computation cost for different 
approaches .     
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efficiency, as has been mentioned above and demonstrated in 
deep neural network related machine learning field. The 
computation cost rises exponentially as the thickness of the 
circuit increases, limiting its application based on its current 
form.  The Nelder-Mead method is much more computationally 
efficient than finite difference method by showing a linear 
increase of computation cost for each 100 iteration learning 
steps. Since the computation is recorded at every 100 iterations. 
for a task like the make_moons dataset, 

In contrast, the backpropagation method proposed here showed 
dramatic advantage over all other methods by shown an almost 
constant dependency on the depth of quantum circuit. The 
computation time is recorded at depth of 20 layer as  3.2 seconds, 
which is almost negligible when compared to the recorded value  
at the same 20 layer thickness : 56 seconds by using Nelder-
Mead method and 458 seconds by using Finite difference 
method.  

D. Impltemention scheme on real quantum computer. 
So far we have focused our results on the simulation using 

quantum simulator. Implementing architecture when using a real 
machine such as NISQ type quantum is described in Fig.7. In 
order to use the error backpropagation method, a quantum state 
|𝜓⟩ is required to get prepared at the initial stage. Therefore, as 
shown in the figure, a quantum circuit having the same 
configuration as the real quantum circuit must be prepared as a 
quantum simulator on classical computer. It should be noticed 
here that his could not be considered as additional load for the 
quantum computing scientist since for fabricating a quantum 
computer at the hardware base, it needs its counterpart of 
quantum circuit simulator to monitor and diagnose the qubits 
and gate error. This is especially true since a quantum computer 
is not allowed to be disturbed during the working condition 
unlike the classical computer. Therefore, for a real quantum 
computer, it always requires a quantum simulator ready for use 
at any time.  That means we can always access to the quantum 
simulator as shown at the right side of Fig.7 to examine and 
obtain detailed information regarding the performance of 
corresponding real quantum computer.  Observation probability 
for each state @𝜓7� can be calculated by shooting 𝑅 times at the 
real quantum computer side. The observation probability 
obtained from the real quantum machine is then passed to the 
classical computer, and the quantum circuit in the simulator for 
simulation is then used. The parameter 𝜃 can be updated using 
backpropagation since all the intermediate information is 
available at the simulator side. After the parameter𝜃∗  is updated 

at the simulate side, it will return to the real quantum machine 
for next iteration quantum simulation. The implementing the 
backpropagation will be reported elsewhere. 

 

IV. CONCLUSION 
We proposed a backpropagation algorithm for quantum 

circuit learning. The proposed algorithm showed success in 
both linear and nonlinear regression and classification problem. 
Meanwhile dramatic computation efficiency by using the error 
backpropagation based gradient circuit learning rather than the 
gradient free method such as Finite difference method or 
Nelder-Mead method. The reduction of computing time is 
surprisingly up to several magnitude high when compared to 
the conventional method. A backpropagation embedded 
quantum circuit paves the path toward large scale and deep 
quantum circuit learning for complicated feature extraction 
problem and intractable optimization problem by designing 
quantum advantage oriented hybrid NISQ algorithm.   
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V. APPENDIX 

 

A. dot product node 
Backpropagation of dot product node. 
 

Fig.1  Graph of dot product node.  

𝐗 is input state. The size of 𝐗 corresponds to N(= 2$) of states with n qubits. 𝐖 is the network weights and corresponds to a gate 
in the quantum circuit. The size is N × N. 

𝐗 = (𝑥<, 𝑥9, … , 𝑥�	)� 

𝐖 = P
𝑤<,< ⋯ 𝑤<,�
⋮ ⋱ ⋮

𝑤�,< ⋯ 𝑤�,�
Q 

Output 𝐘 is written as 𝐘 = 𝐖 ∙ 𝐗. Here, when there is a gradient ST
S𝐘

 with respect to 𝐘 of the loss function 𝐿, the gradient of each 𝐿 
with respect to 𝐗 and 𝐖 is calculated as follows. 

𝜕𝐿
𝜕𝐗 = 𝐖� ∙

𝜕𝐿
𝜕𝐘 

𝜕𝐿
𝜕𝐖 =

𝜕𝐿
𝜕𝐘 ∙ 𝐗

� 

 

B. rotation gate 𝑼(𝜃) node 
The weight 𝐖 in the full-connected network is made to correspond to the rotation gate in the quantum circuit. 

𝐖 = £
𝑤<,< 𝑤<,9
𝑤9,< 𝑤9,9¤ = N

𝑢<,<(𝜃) 𝑢<,9(𝜃)
𝑢9,<(𝜃) 𝑢9,9(𝜃)

O = 𝑼(𝜃) 

Unlike conventional full-connected networks, the elements of the unitary gate 𝑼(𝜃) matrix are not independent of each other and 
have a common parameter 𝜃. Therefore, the gradient of 𝐿 with respect to 𝜃 is obtained by backpropagation using the calculation 
graph shown in Fig. 2. 
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For example, we chose 𝑅` gate, 

𝑼(𝜃) = 𝐑𝐲(𝜃) = §
cos

𝜃
2 −sin

𝜃
2

sin
𝜃
2 cos

𝜃
2

¨	, 

 

𝜕𝐑𝐲(𝜃)
𝜕𝜃 = §

𝜕𝑢<,<
𝜕𝜃

𝜕𝑢<,9
𝜕𝜃

𝜕𝑢9,<
𝜕𝜃

𝜕𝑢9,9
𝜕𝜃

¨ = §
− sin

𝜃
2 −cos

𝜃
2

cos
𝜃
2 −sin

𝜃
2

¨	, 

 

We define vector 𝒊𝟎 = [1 1] and 𝒊𝟏 = 𝒊𝟎�. The gradient is 

 

𝜕𝐿
𝜕𝜽𝒊𝟏

= §

𝜕𝐿
𝜕𝜃

𝜕𝐿
𝜕𝜃

𝜕𝐿
𝜕𝜃

𝜕𝐿
𝜕𝜃

¨ =

⎣
⎢
⎢
⎢
⎡
𝜕𝐿
𝜕𝑢<,<

𝜕𝑢<,<
𝜕𝜃

𝜕𝐿
𝜕𝑢<,9

𝜕𝑢<,9
𝜕𝜃

𝜕𝐿
𝜕𝑢9,<

𝜕𝑢9,<
𝜕𝜃

𝜕𝐿
𝜕𝑢9,<

𝜕𝑢9,<
𝜕𝜃 ⎦

⎥
⎥
⎥
⎤
	, 

 
𝜕𝐿
𝜕𝜽𝒊𝟎

= 𝒊𝟏� ∙
𝜕𝐿
𝜕𝜽𝒊𝟏

	, 

 

Fig. 2 Graph of rotation gate 𝑼(𝜃) node 
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𝜕𝐿
𝜕𝜃 =

𝜕𝐿
𝜕𝜽𝒊𝟎

∙ 𝒊𝟎�. 

From above,  

𝜕𝐿
𝜕𝜃 =

𝜕𝐿
𝜕𝜽𝒊𝟎

∙ 𝒊𝟎� = ²𝒊𝟏� ∙
𝜕𝐿
𝜕𝜽𝒊𝟏

³ ∙ 𝒊𝟎� 

 
𝜕𝐿
𝜕𝜃 =

𝜕𝐿
𝜕𝑢<,<

𝜕𝑢<,<
𝜕𝜃 +

𝜕𝐿
𝜕𝑢<,9

𝜕𝑢<,9
𝜕𝜃 +

𝜕𝐿
𝜕𝑢9,<

𝜕𝑢9,<
𝜕𝜃 +

𝜕𝐿
𝜕𝑢9,9

𝜕𝑢9,9
𝜕𝜃  

 

C. Observation Probability node 
Output state |𝜓*+,⟩ is 

|𝜓*+,⟩ = 𝑐>|0⟩ + 𝑐<|1⟩ +⋯+ 𝑐�;<|𝑁 − 1⟩, 
where 𝑐7 is the probability amplitude and satisfies	|𝑐>|9 + |𝑐<|9 + ⋯+ |𝑐�;#|9 = 1.  

 
Fig. 3 Graph of the probability amplitude node  

The gradient of 𝑝# with respect to a probability amplitude 𝑐7 can be calculated as follows. 𝑐F́ is the complex conjugate of 𝑐7. 

𝜕𝑝7
𝜕𝑐7

=
𝜕
𝜕𝑐7

^𝑐7𝑐EF_ = 𝑐EF 
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