
An Automatic Code Modification and Optimization
System for High-Level Synthesis
Mao Hatto †, Takaaki Miyajima ‡, Takaya Toda ‡, Hideharu Amano †

† Graduate School of Science and Technology, Keio University, Japan
asap@am.ics.keio.ac.jp

Abstract—FPGA (Field Programmable Gate Array) has been
used to recent studies and commercial products in high per-
formance computation systems. Hardware Description Lan-
guage(HDL) for FPGA is sometimes difficult for software en-
gineers who do not have experience and knowledge of hardware
design. Solving these issues, High-level Synthesis(HLS) Language,
which generates HDL from C-based language automatically,
has gathered attention recently. Most HLS provides compiler
directives, a combination of sentences and numbers, to search
better trade-off. By using this, trial-and-error process to achieve
desire trade-off has became much earsier than HDL. Nevertheless
to understand relationship between the directives and the final
result, user are still required HLS depend experience. For
this issue, we proposes an Automatic Code Modification for
High-Level Synthesis (ACM-HLS), a tool for clarify the above
mentioned relationship. In this paper, ACM-HLS focuses on loop
optimization which has greate responsibility to speed-area trade-
off. For evaluations, we chose four applications, and achieves up
to 66.0% speed up, and 52.3% speed up on average. Furthermore,
our tool can also shows a tendency of optimization. Hence, users
can chose the combination of directives even they do not have
knowledge of experience.

I. INTRODUCTION

While most of studies using FPGAs focus on the perfor-
mance achievement[1], the difficulty of HDL (Hardware De-
scription Language) coding is increasing as the complication
and enlargement of applications are getting forward. Also,
reducing the debug time such HDL code is an important
problem and research topic. To solve such problems, High-
Level Synthesis(HLS) has been received an attention. HDL
code is automatically generated from C-like language (HLS
language) by using high-level synthesis tool. Impulse C[2],
CatapultC[3] and CyberWorkBench[4] have been utilized in
recent FPGA design with their synthesis environment.

However, in order to optimize the design, such HLS en-
vironment still has problems especially for designers who do
not have enough knowledge on FPGA hardware. The compiler
directives are the easiest way to achieve a desired result, user
choose directive and changes the number for that. For example,
loop unrolling is the most important technique to search trade-
off between processing time and area. User inserts a ”Unroll”
directive just above the loop in source code to determine the
method of unroll, and change degree of unrolling by changing
the number for the directive. After many repeats of such
manual changing, user will gets desired result. In particular,
the relationship between the combination of directives/num-
bers and the final result are difficult to understand, and this

source files

Initial
source files

C
analysis

C
pre-process

ACM-HLS

Loop
Unrolling

Secondary
Optimization

Hardware
Generation

Back-end

Front-end
Our propasal tool

Fig. 1: An synthesis flow of high level synthesis and our tool

relationship depends on HLS tools.
We propose and evaluate Automatic Code Modification for

High-Level Synthesis (ACM-HLS) which is an optimization
tool for supporting design exploration using high-level syn-
thesis in order to mitigate the burden of designers. Directives
are automatically inserted into the loop structure of the source
code and passed to HSL tool. A number of combination
of directives are tried and synthesized by using our tools,
user just choose hopeful candidates. For optimization, three
kinds of unroll methods: loop unrolling, loop partitioning, and
loop folding, are automatically controlled. For evaluation, we
applied our tool to four applications and obtained tendency of
the relationship among directives/numbers.

One of the advantage of our tools is less dependency to HLS
environment. This advantage comes from our pre-definition,
HLS language is similar to C language, and user just changes
the combination of directives and numbers to achieve trade-off.
Figure.1 shows outline of common HSL sysnthesis flow. Our
tool modiefies inputed source code at the top left. Additionally,
CyberWorkBench (CWB) which is a commercial high-level
synthesis tool by NEC Corporation, was used as a target
synthesis tool.

This paper includes:

• We propose Automatic Code Modification for High-Level
Synthesis (ACM-HLS), which is an assist tool for design
exploration using high-level synthesis. Directives and are
automatically inserted into the loop structure of the source
code and the number for directives are also changes to
achieve desired result. By using our tool, user efforts are
greatly reduced.

• Four applications are applied the tool and three loop
unrolling methods: unrolling, partitioning and folding are
automatically controlled.

 
Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186–5140 
Volume 2, Number 1, pages 12–17, January 2013

- 12 -



XX.c

bdlpars

XX.IFFbdlpars
-Zflib_fcnt_out

bdlpars
-Zmlib_mcnt_out

MLIB

MCNT

FLIB

FCNT

XX-auto.MLIB

XX-auto.MCNT

XX-auto.FLIB

XX-auto.FCNT

bdltran

template.IFF

BLIBgenFLIBgen

BLIB

XX_E.IFFXX_C.IFF XX.QOR

veriloggen

XX_E.v

cmscgen

XX_C.Makefile

mkmfsim

Makefile.GNU

make

cycle.exe

input.tlv

Cycle Verification

Total Area
Critical Path Delay

Number of cycles

Fig. 2: Synthesis flow in CyberWorkBench

II. AN OVERVIEW OF CYBERWORKBENCH

We firstly explain CyberWorkBench(CWB) as a outline of
common high-level synthesis (HLS) flow, and clarify where is
ACM-HLS tool. CWB is a commercial tool by NEC, one of
the most powerful and clever HLS tool. It automatically gen-
erates HDL from a C-like language, called BDL (Behavioral
Design Language)[5]. On the other hand, its complexity and
the number of options requires user CWB-depend experience
and knowledge. We showed outline of common HSL synthesis
flow on Figure.1, and this flow is almost the same as that
of CWB. From ”C pre-process” to ”C analysis”, it called
Front-end that parse inputted source file to a intermediate
description. The following processes are called Back-end that
generates HDL based on the intermediate description. Our
tool modifies source code on the left top of figure, and
generates new source code. Many optimization research has
been done for the Back-end, but most of them are depends on
intermediate language or implementation.

A. Synthesis Flow

Figure.2 shows detail of the synthesis flow of CWB [4].
User write source code in BDL (XX.c), and give it to CWB.
The following steps work as follows:

/* Cyber unroll_time = all */
for(i=0; i<10; i++){

//do somthing
}

Fig. 3: Usage example of directive

• bdlpars converts behavioral description.
This process corresponds to “C Pre-Processing” for Ini-
tial Source files in Figure 1. CWB loads a behavioral
description code written in BDL, and converts it into the
corresponding internal format (XX.IFF).

• bdltran is for behavioral synthesize.
This process generates a structure-level intermediate file
from the format file, which is generated in the previous
process. Although this process needs library files and
restriction files, CWB can generate them automatically.
This process also generates quality file (XX.QOR). We
can estimate the total area and critical path delay.

• veriloggen generates Verilog-HDL file.
This process corresponds to the “Hardware generation”
in Figure 1. Using the structure-level intermediate file,
CWB generates the Verilog-HDL codes.

• FLIBgen and BLIBgen generate library files.
These steps create the library file and restriction file.
BLIBgen generates the basic library, and FLIBgen gener-
ates the template for restriction file.

• cmscgen is for cycle verification.
This process loads the test data (input.tlv), and executes
a cycle verification. We can know required number of
cycles via the cycle verification.

B. Directive

CWB has compiler directives, called ”attribute”. This direc-
tives are a sentence structured pragma that gives CWB optional
information of the circuit generation. Figure 3 shows a usage
example of loop unrolling directive. Our tool automatically
inserts this directives and changes the option. In addition, this
usage is very common in other high-level synthesis tools, such
as Impulse C[2]. Some directives have an optional information.
In Figure 3, “all” option unrolls the entire of target loop. If a
user sets any other number instead of “all” option, the loop is
unrolled according to the optional number. More specification
of directives will be mentioned in Section IV-B.

III. RELATED WORK

Some researches attempted to implement any application
on FPGA using high-level synthesis. Jason Cong[1] imple-
ments Lithographic Aerial Image Simulation on FPGA. In this
research, Impulse C and AutoPilot are used for generating
the RTL from ANSI-C code, and focuses on manual code
refinements especially for the core nested loop. As the result,
up to 15 times speedup over the software implementation was
achieved.

Greg Stitt[6] proposes a code refinement methodology for
hardware synthesis from C code. He proposes ten methods

- 13 -



that improve hardware performance. Using these methods,
some hardware/software partitioned applications run 3.5 times
faster than the case when partitioning was done on the original
unrefined code.

Cwbexplorer [7] has a code modification extension in
CyberWorkBench. It is based on an Adaptive Simulated
Annealer Exploration Algorithm (ASA-ExpA) for behavioral
descriptions written in untimed C or SytemC. Design space
exploration by Cwbexplorer is mainly done through attributes
that are inserted in the source code. ASA-ExpA generates a
new set of attributes for each explorable operation in the source
code, based on the previous result, the given area and timing
constraints, and a global cost function (GCF). The area and
latency weights of the GCF, which represent the importance
of either minimizing area or latency, are adaptively modified
during the exploration in order to explore the complete area v.s.
latency trade-off spectrum. The results of Cwbexplorer show
that it successfully searches the design space quickly finding
the smallest and fastest design for most benchmarks, incurring
in small penalties (5% in area and 8% in latency) for larger
benchmarks while reducing the total run-time by an average
of 66% compared to a brute force approach. Cwbexplorer has
almost the same aims with our research. However, users have
to write additional files for exploring the design space. This
decreases high usability of high-level synthesis. Furthermore,
we tried the direct code modification such as loop partitioning,
which does not be implemented in Cwbexplorer.

In general, it is difficult to predict the proper code refine-
ment methods, such as where and which attributes should be
inserted. Users have to take many times to know the tendency
via such methods. Our tool aimed to show the tendency via
code refinement methods, and lighten the burden in high-level
synthesis. Furthermore, our research focuses on general high-
level synthesis tool, not only for CyberWorkBench.

IV. OVERVIEW OF THE ACM-HLS TOOL

This section introduces the ACM-HLS tool. Our tool was
designed based on the following considerations.

• A target user is an engineer who does not have technical
knowledge of hardware synthesis.

• Through the automatic optimization environment, the
usability of high-level synthesis tool should be improved.

• Input code is optimized in order to generate the best
architecture for user’s demand.

• The ACM-HLS shows a tendency of optimization to
designers.

A. Automatic Modification and Synthesize flow

Figure 4 shows the overview of ACM-HLS. In CWB,
there are some steps for synthesize like Figure 2. User is
just required to prepare three information files: information
of synthesis environment, test data file and BDL file. Then,
ACM-HLS executes the synthesis flow instead of user, and
explores the optimized architecture and generates its Verilog-
HDL code. ACM-HLS firstly searches the target position
to insert directives. All three loop optimization (unrolling,

Input File

Code Analysis

Synthesize

Loop UnrollingLoop PartitioningLoop Folding

SynthesizeSynthesizeSynthesize

EvaluateEvaluateEvaluate

Merging the Methods

Synthesize/Evaluate

Generate Verilog-HDL

Evaluate

Partial Optimization

Global Optimization

Fig. 4: ACM-HLS synthesis flow

partitioning and folding) methods will be applied to loop
block, the tool search “for” blocks. Then, the tool check the
iteration times statically.

When a loop block was found, ACM-HLS starts optimiza-
tion flow. The optimization flow is roughly divided into two
phases: the partial optimization and the global one. This is
because that partial optimum doesn’t always equal to global
optimum. Unroll less computer intensive loop would be less
effective to performance and consume relatively high area.
As shown in Figure 4, ACM-HLS applies one of three loop
optimization methods to a loop block at the partial optimiza-
tion phase. Then, ACM-HLS synthesizes and evaluates these
optimized codes via CWB. In the global optimization phase,
ACM-HLS gathers the best optimization methods of each loop
block. Then, it combines these methods and evaluates them.
Finally, the results of all generated architectures are sorted, and
ACM-HLS generates the closest result to the user’s demand.

B. Optimization Methods

In this paprer, we focused on the loop optimization which
directly affect to performance and area trade-off. As the meth-
ods of loop optimization, we applied three types of unrolling;
loop unrolling, loop folding and loop partitioning.

1) Loop Unrolling: Loop unrolling is a common optimiza-
tion technique to extract parallelism of loop by execution of a
number of loops in a single iteration. The derectives for CWB
are automatically inserted into the appropriate position around
the loop in the source code by ACM-HLS. The synthesis
results are controlled by the derectives. For example, by setting
the number in the derectives, the degree of loop unroll is
defined, except for “all” option which fully unrolls the loop.
Figure.5 and 6 show an example of partial loop unrolling
two times. ACM-HLS selects the target loop and sets the
appropriate options like the example.

2) Loop Folding: Loop folding is an optimization method
for loop that pipeline target loop block. This method also

- 14 -



for(i=0;i<10;i++){
x[i] = i;

}

Fig. 5: before loop unrolling

/*Cyber unroll_time=2*/
for(i=0; i<10; i++){

x[i] = i;
}

Fig. 6: after loop unrolling

for(i=0;i<10;i++){
x[i] = i;

}

Fig. 7: before loop folding

/*Cyber folding = 1*/
for(i=0; i<10; i++){

x[i] = i;
}

Fig. 8: after loop folding

for(i=0; i<10; i++){
x[i] = i;

}

Fig. 9: before loop partitioning

for(i=0; i<5; i++){
x[i] = i;

}
for(i=5; i<10; i++){

x[i] = i;
}

Fig. 10: after loop partitioning

improves the performance by parallel processing if possible.
Loop folding is done by the directive similar to the loop
unrolling. The directive also specifies the number of DII
(Data Initiation Interval). ACM-HLS adjusts this option from
1 to available number automatically. Figure.7 and 8 show an
example of loop folding with DII = 1.

3) Loop partitioning: Loop partitioning can extract paral-
lelism within loop block. Unlike the previous two optimization
methods, this partitioning does not realized by the directive
in CWB. ACM-HLS modifies the code to separate the loop
directly. Figure 9 and 10 show the example of loop partitioning
for dividing a loop with ten iterations into two loops.

In some cases, the number of iteration is indivisible by
the number of partition. Fig 11 shows the example of loop
partitioning for dividing a loop with ten iterations into three
loops. Since ten is indivisible by three, ACM-HLS adds
another loop block automatically.

C. Reducing the execution time

As ACM-HLS generates many codes, prosessing time for
optimization often becomes longer, few hours or days, and
intolerable. Furthermore, if a design includes loops with a lot
of iterations, and ACM-HLS unrolls all of them, synthesize
time even for single directive position would take a long time.
To deal with this problem, We took three ways in order to
address this problem.

1) Reducing the number of synthesize patterns:
ACM-HLS often generates similar patterns and they
have the same parallelism. We can thus cut down the
pattern those which have the same parallelism as others.

for(i=0; i<3; i++){
x[i] = i;

}
for(i=3; i<6; i++){

x[i] = i;
}
for(i=6; i<9; i++){

x[i] = i;
}
for(i=9; i<10; i++){

x[i] = i;
}

Fig. 11: after loop partitioning

More concretely, ACM-HLS sets the optional number
of loop unrolling in only divisors of loop iterations. We
can use the same technique also in the loop partitioning.
As three are the same parallelism in different patterns,
it is enough to generate only partitioning in divisors of
loop iterations. time.

2) Selecting the target loop:
Some loop optimizations, for example, initializing the
memory do not give any impact to the design per-
formance. Thus, we can reduce the execution time by
cutting down optimization for such loops. We weight
and rank the operation in each loop. Then, ACM-HLS
optimizes a limited number of loops with high priority.

3) Decreasing the synthesis time:
We tried not to waste generated restriction files. In the
optimization flow of ACM-HLS, similar patterns are
used and optimized by similar methods. When such
patterns are synthesized, the same restriction files are
used to save the time.
Note that, as CWB has an option to reduce synthesis
time, we can cut down synthesis time for each trial.
However, as this methods depends on CWB, it is not
applicable to other high-level synthesis tools. Thus, we
did not select this technique.

When using brute force searching, the processing time of
ACM-HLS took about a whole day in the worst case. However,
it reduced to less than one hour after using these techniques.

V. EVALUATION

Four applications, Simple Moving Average, Heap Sort, Lens
Distortion Correction and Optical flow, are selected to evaluate
ACM-HLS. Four applications include various loop structures,
and ACM-HLS explores an optimal directive pattern. In eval-
uation, we focus on the operating speed and used amount
of resource. Additionally, ACM-HLS was implemented using
CyberWorkBench version 5.2.2.1, and evaluated targeting with
the Virtex-6 series by Xilinx Inc.

In the following result graphs, each name of item is com-
posed in three parts. That is, “optimization methods” “the
number of target loop” ”optional number in the optimization

- 15 -



 0

 100

 200

 300

 400

 500

 600

 700

 800

p1_2p1_3p2_2u1_3f1_1p2_3u2_2u1_2f1_2SMA

ex
ec

ut
io

n 
tim

e[
ns

]

Fig. 12: Execution time
(SMA)

 0

 50

 100

 150

 200

 250

 300

 350

 400

p1_2p1_3p2_2u1_3f1_1p2_3u2_2u1_2f1_2SMA

re
so

ur
ce

s

Flip Flop
Slice

Fig. 13: Amount of resource
(SMA)

 0

 50

 100

 150

 200

 250

 300

 350

u1_3p1_2p1_4p1_3u1_2sort

ex
ec

ut
io

n 
tim

e[
ns

]

Fig. 14: Execution time (Heap
Sort)

 0

 500

 1000

 1500

 2000

u1_3p1_2p1_4p1_3u1_2sort

re
so

ur
ce

s

Flip Flop
Slice

Fig. 15: Amount of resource
(Heap Sort)

methods”. In the “optimization methods”, “u” means “loop
unrolling”, “f” means “loop folding” and “p” means “loop
partitioning”. For example, “u1 2” means two times partial
loop unrolling for the first loop part.

A. Simple Moving Average

Simple Moving Average (SMA) is small processing that
calculates unweighted mean of the previous n data points. In
this evaluation, we set n to 8.

Figure 12 and 13 show the results of SMA. The result of
the original source code, labeled as “SMA”, is at the leftmost
in the graphs. In the default settings, CyberWorkBench fully
unrolls the target loop blocks. As this function disturbs to find
proper optimization methods, we set this function “off”. The
original source code means a generated results under such
CWB setteings, and ACM-HLS also doesn’t change anything.

SMA has two loops and their iteration number is seven
in this evaluation, ACM-HLS achieved speeding up about
16% via loop folding in DII = 2 for the first loop. Loop
folding option pipelines target loop block, and the operational
frequency is improved. On the other hand, required resources
increased about 10%. Here is a trade-off between execution
time and required resources.

B. Heap Sort

Heap Sort is a sorting algorithm that consist of a member
of the selection sort family. Double loop in this algorithm,
iteration times of inner loop cannot be decided statically.
Therefore, only the outer loop became the target of ACM-
HLS for optimization. r

Figure 14 and 15 show the results of heap sort. Original
source code was labeled as “sort” and located at the leftmost
in the graph. ACM-HLS achieved about 42% performance
improvement via two times partial loop unrolling for the

 0

 20

 40

 60

 80

 100

 120

 140

BalancedASAPoptical

ex
ec

ut
io

n 
tim

e[
m

s]

Fig. 16: Execution time (Lens
Distortion)

 0

 500

 1000

 1500

 2000

 2500

 3000

BalancedASAPlens

re
so

ur
ce

s

Slice
Register

Fig. 17: Amount of resource
(Lens Distortion)

TABLE I: Directive Pattern of the partial optimization in the
lens distortion

A B C D E F G H I J K
p1 32 © © © © © © ©
u2 20 © © © © © © ©
u3 2 © © © © © © ©
u4 2 © © © © © © ©

loop. ACM-HLS extracted the instruction-level parallelism, the
operational frequency was improved. On the other hand, the
increased resource is only about 1.0%.

C. Lens Distortion Correction

Unlike the previous two applications, lens distortion correc-
tion is a practical large. Most lenses have bend lines outwards
(barrel distortion) or inwards (pincushion distortion)[8]. This
algorithm loads an image data that have such distortions, and
outputs photo data that have been took away the distortions.

Figure 16 and 17 show the evaluation of lens distortion.
Lens distortion has six loop parts, which has a large number of
iterations and so the graph shows only three evaluation results:
“Lens”, “ASAP” and “Balanced”. “Lens” is the original direc-
tive pattern. “ASAP” achieved the highest operating speed, and
“Balanced” is aimed to improved the operational speed with
the lowest increasing of resource utilization. In this algorithm,
about 50% of speed was achieved, and increase of resource
utilization was about 80% in “ASAP” directive pattern. On the
other hand, “Balanced” directive pattern had about 16.0% of
acceleration and increase of resource utilization was kept in
1.0%. The “ASAP” directive pattern was composed of some
optimization methods.

In the step of partial optimization, there were four possible
optimization methods to achieve speed-up. Combination of
these four methods were 24 patterns , and an original source
code and four directive patterns that have only one optimiza-
tion method were synthesized before the partial optimization
step. Therefore, the combination of them are 24 − 4− 1 = 11
patterns. Table I shows those combination patterns, and table II
shows the evaluation of each combined optimization method.

According to the Table II, combining all optimization meth-
ods (directive pattern K) does not achieve the best result.
Besides, there are some directive patterns with performance
degrade (directive pattern H and I). ACM-HLS accomplished
the evaluation of these combined optimization methods auto-
matically.

- 16 -



TABLE II: Evaluation of whole optimization in the lens
distortion

Execution Slice Flip Speedup decrease
time[msec] Flop of resource

A 58.1 3239 1370 48.7% -173.9%
B 107.3 1926 699 5.4% -56.0%
C 56.3 2186 833 50.3% -79.4%
D 56.3 3784 1429 50.3% -209.7%
E 107.3 1816 691 5.4% -49.0%
F 56.3 2218 839 50.3% -81.6%
G 61.9 4015 1484 45.4% -226.7%
H 125.2 2676 885 -33.3% -1.0%
I 125.2 2867 876 -33.3% -6.2%
J 93.9 2666 860 17.1% -109.5%
K 62.1 4803 1599 45.2% -280.4%

 0

 100

 200

 300

 400

 500

 600

 700

 800

BalancedASAPoptical

ex
ec

ut
io

n 
tim

e[
m

s]

Fig. 18: Execution time (Op-
tical Flow)

 0

 500

 1000

 1500

 2000

BalancedASAPoptical

re
so

ur
ce

s

Slice
Register

Fig. 19: Amount of resource
(Optical Flow)

D. Optical Flow

Optical flow is the pattern of apparent motion of objects in
a visual scene utilized in many practical video compressions.
From several common optical flow methods, we selected block
based optical flow that has a simple algorithm but many
iterations. We used a gray scale image data in 200x300 pixels,
and set the window size to 3x3. Optical flow also has a double-
loop to load image data, and a quadruple loop in the kernel.

Figure 18 and 19 show the evaluation results of the optical
flow. In the “ASAP” directive pattern, about 66.0% of accel-
eration was accomplished, and increase of resource utilization
was about 48.0%. On the other hand, “Balanced” directive
pattern has about 37.0% of acceleration with only 5.0%
increase of resource utilization. In the partial optimization step,
applicable methods that increased performance are just for one
loop. Therefore, the global optimization step was not executed.

E. Combination with Manual Optimization

Using only automatic optimization, the processing time is
reduced by 66.0% at maximum. However, if users step in the
flow of optimization easily, more efficient optimization can
be possible. At the end of the evaluation, we proposed such
collaboration with automatic tool and manual optimization. As
this attempt, we chose the application of Lens Distortion Col-
lection. Referring to a code refinement methodology proposed
in previous work[6], we modified the code using the following
methods: conversion to explicit memory access, elimination of
extra branch, and conversion to fixed point computation.

Using the manual optimization, the execution time of Lens
Distortion Collection was reduced by 62.6% compared with

 0

 20

 40

 60

 80

 100

 120

Tool and HandTooloriginal

ex
ec

ut
io

n 
tim

e[
m

se
c]

Fig. 20: Execution time with manual opti-
mization

the original . When we used only ACM-HLS tool, speed-up
was 56.3%. It demonstrates that the ACM-HLS is efficient as
a basis of manual optimization.

VI. CONCLUSION

In this paper, we proposed the Automatic Code Modification
for High-Level Synthesis tool using CyberWorkBench. Loop
optimization is usually complex and time consuming task to
meet desired result, and the task is not only for the beginners
of hardware implementations, but also experts. The main
contributions are as follows,

• HLS tools independent, modify original source code
• Loop optimization(Unrolling, folding and partitioning)
• Two step optimization: not local optimum but global one
• Show the tendency of loop optimization of target
We evaluate ACM-HLS by using four applications, the

result shows successfully accelerate execution time by 66.0%
at maximum, 52.3% on average. On the other hand, there
are trade-off between execution time and resource utilization.
ACM-HLS supports a trade-off by generating the balanced
design and showing the tendency of loop optimization.

Although the current research only focuses on loop opti-
mization, there are other optimization methods for hardware
implementation. As future work, we will try to automate such
optimization methods, and lighten the burden for users in the
high-level synthesis.

Acknowledgments:
This work is supported in part by Kazutoshi Wak-

abayashi(NEC) and Yamashiroya Atsushi(NEC).

REFERENCES

[1] Jason Cong and Yi Zou, “Lithographic Aerial Image Simulation with
FPGA-Based Hardware Acceleration,” in FPGA, Feb 2008.

[2] Impulse accelerated technologies, “Impulse C,” in
http://www.impulsec.com/.

[3] Mentor Graphics, “CatapultC Synthesis Overview,” in
http://www.mentor.com/esl/catapult/overview.

[4] Kazutoshi Wakabayashi, “CyberWorkBench: Integrated Design Environ-
ment Based on C-based Behavior Synthesis and Verification,” in IEEE,
2005.

[5] NEC, “BDL reference manual version 3.9,” 2011.
[6] Greg Stitt, Frank Vahid, Walid Najjar, “A Code Refinement Methodology

for Performance Improved Synthesis from C,” in ICCAD, Nov 2006.
[7] Benjamin Scafer, Takashi Takenaka, Kazutoshi Wakabayashi, “Adaptive

Simulated Annealer for High Level Synthesi Design Space Exploration,”
in IEEE, 2009.

[8] DxO Labs, “Photography, Lens distortion,” in http://www.dxo.com/.

- 17 -




