
Hybrid interconnection topologies for high
performance and low hardware cost based on

hypercube and k-ary n-tree
Junhong Li

Department of Computer Science
Hosei University

junhong.li.2k@stu.hosei.ac.jp

Yaodong Wang
Department of Computer Science

Hosei University
yaodong.wang.7y@stu.hosei.ac.jp

Yamin Li
Department of Computer Science

Hosei University
yamin@hosei.ac.jp

Abstract—In the field of high-performance parallel computing,
interconnection networks based on fat-tree topology have been
widely used. A leaf-level switch can be connected to k computing
nodes through k links for a traditional fat-tree structure. If
a large-scale high-performance also uses traditional fat-tree,
it requires a large number of switches and links to connect
computing nodes, which will significantly increase the hardware
cost. In this regard, this paper proposes two hybrid topologies to
solve this problem by combining fat-tree and hypercube, named
k-ary n-tree k-cube (KANTC) and Mirrored k-ary n-tree k-
cube (MiKANTC). Instead of connecting k compute nodes to
a leaf switch directly, we replace all the leaf-level switches of
the k-ary n-tree with k-cubes. In this way, the leaf level will
have kn−2 k-cubes, where each cube will select k switches to
connect to the upper level of the k-ary n-tree, and the rest of
the switches will be used to connect to the compute nodes. Each
cube can connect k(2k − k) compute nodes. We give routing
algorithms based on shortest path, and evaluated path diversity,
cost, performance for KANTC and MiKANTC. The results show
that the KANTC and MiKANTC can save 84% of switches and
78% of links in massively parallel systems when k = n = 8,
compared to fat trees, and both KANTC and MiKANTC have
higher path diversity than fat-tree.

Index Terms—interconnection network, fat-tree, hypercube,
hardware cost, routing algorithm, path diversity

I. INTRODUCTION

In high-performance computing systems, large-scale in-
terconnection networks are essential. Nowadays, with the
development of distributed computing and cloud comput-
ing technologies, the number of compute nodes integrated
into high-performance computing systems is increasing [1],
and the size of interconnection networks is getting larger.
Therefore, the trade-off between the cost and performance
of large-scale interconnection networks becomes a critical is-
sue for high-performance computing. Various interconnection
networks have been designed to achieve a better trade-off
between performance and hardware cost. Among the top500
supercomputers, the fat-tree [2] is one of the most commonly
used interconnect topologies. The supercomputer Summit [3]
(ranked 4th in the top500) used a fat-tree network based on
InfiniBand interconnects. The fat-tree network isolates traffic
between compute partitions and storage subsystems, providing
a more predictable application performance. In addition, the

high redundancy of this network and its reconfigurability
ensure reliable high performance even after the failure of net-
work components [4]. In a traditional tree network topology,
the bandwidth is converged level by level, and the network
bandwidth at the tree’s root is much smaller than the sum of
all bandwidths at the separate leaves.

On the other hand, a fat-tree is more like a real tree, where
the branches get thicker the further it gets to the root, i.e.,
the network bandwidth does not converge from the leaves to
the root. It is the basis for fat trees to be able to support
non-blocking networks. However, the scalability of traditional
fat-tree is theoretically limited by the number of ports in the
core layer switches, which is not conducive to the long-term
development requirements of data centers. To make fat-tree
more scalable, some fat-tree schemes with multiple roots have
been proposed, such as the k-ary n-tree proposed by Petrini
and Vanneschi [5]; where k both represents the number of
links to the upper or lower layers, and the number of compute
nodes connected to one leaf switch. The n is the number of
layers, which means that the structure can always maintain a
fixed number of switch ports, regardless of the size. It is very
conducive to topology scaling.

Gómez et al. proposed a reduced unidirectional fat-tree
(RUFT) [6], [7], a structure that reduces the hardware cost
of the switches. All packets must traverse from the first level
switch to the last level switch and then traverse along the long
link to the compute node because the links in RUFT are unidi-
rectional. Ludovici et al. showed that RUFT is a more powerful
option than traditional butter in implementing network-on-chip
(NoC) [8]. Wang et al. pointed out that due to the complexity
of the topology, the floor plan design of fat-tree-based NoC
is very challenging and proposed a method to optimize the
fat-tree floor plan that can effectively reduce the number of
intersection points and minimize the interconnect length [9].
Li proposed the Mirror k-ary n-tree (MiKANT) network [10]
to reduce the hardware cost of fat-tree by connecting more
compute nodes with fewer switches and links, thus reducing
the hardware cost and making it easier to be implemented
than fat-tree and bidirectional Clos networks. Also, MiKANT
shortens the average distance to reduce communication time
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and achieve high performance. Wang gave the link fault-
tolerant routing algorithm in the MiKANT interconnection
network [11] and evaluated its performance by simulation.

The hypercube [12] structure is widely used due to its
elegant topological properties and ability to simulate various
other commonly used networks. However, hypercubes have a
significant drawback: the number of communication links per
node is a logarithmic function of the number of nodes in the
network. It makes traditional hypercube networks unsuitable
for large-scale scaling. In [13], Arai and Li proposed a variant
topology based on the hypercube called the Generalized-Star
cube (GSC) and gave its routing algorithm. Wang proposed
a hybrid structure based on hypercube and fat-tree [14], and
presented a method for evaluating path diversity.

To solve these problems, we propose two hybrid topologies:
k-ary n-tree k-cube (KANTC) and Mirrored k-ary n-tree k-
cube (MiKANTC) based on fat trees and n-dimensional hy-
percubes. For KANTC/MiKANTC, the parameter k represents
the dimensionality of the hypercube and the switch arity to
ensure that the radix of the architecture is equal to 2k. Instead
of connecting k compute nodes to the leaf switches directly,
we replace all the leaf-level switches of the k-ary n-tree with
hypercubes. Thus, the leaf level will have kn−2 cubes, each
cube will choose k switches to connect to the upper level of
the k-ary n-tree, and the rest of the switches will be used to
connect to the computational nodes. Each cube can connect
k(2k − k) compute nodes. We first calculate the number of
compute nodes, links, and switches, the diameters of KANTC
and MiKANTC. Then, we analyze the hardware cost, perfor-
mance, and path diversity of KANTC and MiKANTC. The
results show that KANTC and MiKANTC achieve higher path
diversity with lower hardware costs than the traditional fat-
tree.

The rest of the paper is organized as follows. Section II
briefly describes the related work. Section III describes the
topologies of KANTC and MiKANTC and their topological
properties. Section IV focus on routing algorithms. Section V
evaluates the performance of KANTC and MiKANTC. Section
VI concludes the paper.

II. RELATED WORK

A. n-dimensional Hypercube

An n-dimensional hypercube, or n-cube for short, is a
commonly used interconnected network with 2n nodes and
n2n−1 links, and its node degree and diameter are n. A binary
sequence of dimensions can represent any switch node. For
any two nodes, there are links between them when and only
when their binary code sequence differ by only one bit. Fig. 1
1(a) and 1(b) show a 2-cube and a 3-cube, respectively.

B. k-ary n-tree and Mirrored k-ary n-tree

A k-ary n-tree is a special case of a fat-tree, and a Mirrored
k-ary n-tree, or MiKANT for short, is a special case of
a k-ary n-tree. k-ary n-tree has kn compute nodes, nkn−1

switches, and nkn links. Each switch in level 0 is connected
to k compute nodes. Fig. 2 shows a 3-ary 3-tree, where
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Fig. 2. A 3-ary 3-tree
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Fig. 3. A Mirrored 3-ary 3-tree

rectangles represent switches and circles represent compute
nodes. There are kn = 27 compute nodes, nkn−1 = 27
switches, and nkn = 81 links. Each switch of the k-ary n-
tree is labeled as ⟨L,D⟩, where L(Level) denotes the stage
and L ∈ {0, .., n− 1}, and D = Dn−2, Dn−3, ....D1, D0

is a (n − 1)-tuple {0, 1, . . . , k − 1}n−1, which identifies the
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switches of stage L. MiKANT has 2n− 2 stages; each stage
has k − 1 switches. The upper n− 1 stages are symmetric to
the lower n−1 stages. The fractional number of all switches is
2k. the diameter of MiKANT(k, n) is 2n. the partition width
of MiKANT(k, n) is k/2. In MiKANT(k, n), each switch is
labeled as ⟨G,L,D⟩ where G (group) denotes the group ID
with G ∈ 0, 1, and L and D are the same as in the k-ary n-tree.
Fig. 3 shows a MiKANT (3, 3). There are (2n−2)kn−1 = 36
switches, 2kn = 54 compute nodes, and (2n − 1)kn = 135
links.

III. KANTC AND MIKANTC

This section describes how KANTC and MiKANTC are
encoded and their topological characteristics.

A. k-ary n-tree k-cube

k-ary n-tree k-cube is motivated by the k-ary n-tree and
n-dimensional hypercube. It is represented as KANTC(k, n),
where k indicates both the dimension of hypercube and the
arity of the k-ary n-tree. KANTC(k, n) is divided into two
parts, the upper part consists of n − 1 layers of the k-ary
n-tree, and the lower part consists of kn−2cubes. In other
words, we replace all the leaf-level switches of the k-ary n-
tree with k-cubes instead of directly connecting the k compute
nodes to the leaf switches. Each k-cube can connect k(2k−k)
compute nodes. In a hypercube of KANTC, k switches connect
to the upper k-ary n-tree. These k switches are also part
of the k-ary n-tree, and we call these switches intermediate
switches and the remaining 2k−k switches are used to connect
computational nodes.

For the encoding of KANTC(k, n), we propose a hybrid
encoding approach based on k-ary n-tree and hypercube.
Each switch is marked as ⟨L,D,C⟩, as shown in the fig. 4,
where C represents the k-bit binary encoding of a hypercube
switch, a C = Ck−1, Ck−2, ..., C1, C0, where Ci ∈ {0, 1}. As
mentioned before, k intermediate switches need to be selected
in a hypercube. We have chosen a bitwise inverse approach to
ensure that the intermediate switches are distributed as evenly
as possible. First, it needs to determine the encoding of the
⌈k/2⌉ switches, picking all zeros as the first switch, and For
switch i starting from the second switch, we invert all the
values from bit i to bit k − iof the previous switch until the
⌈k/2⌉th switch. For the remaining ⌊k/2⌋ switches, we inverted
all of the previously decided switches until the ⌊k/2⌋ switch.
For example, for a four-dimensional hypercube, we choose
⟨0, 0, 0, 0⟩, ⟨0, 1, 1, 0⟩, ⟨1, 0, 0, 1⟩, ⟨1, 0, 0, 1⟩ ⟨1, 1, 1, 1⟩ as
intermediate switches. the ⟨L,D⟩ part of the KANTC code,
consistent with the k-ary n-tree,where the ⟨C⟩ part of the n-
1 to 1 layer will remain all-zero, and the 0th layer is also
used as part of the hypercube, ⟨C⟩ is consistent with the
hypercube, and for the convenience of the routing, the group
will be aligned with its group of the k-ary n-tree in which it
is located.

Fig. 4 shows a KANTC(3, 4). There are kn−2 = 9 3-
cubes, and each hypercube is connected to the above tree
through the intermediate switch. In a 3-cube, there are 2k = 8

switches (including the intermediate switch). In addition to
the intermediate switches, each 3-cube switch connects three
compute nodes. There are 135 compute nodes.

B. Mirrored k-ary n-tree k-cube

Mirrored k-ary n-tree k-cube, represented as MiKANTC
(k, n), is assembled based on MiKANT(k, n) and k-cube.
Similar to the encoding of KANTC, each switch of
MiKANTC(k, n) is marked as ⟨G,L,D,C⟩, where G repre-
sents a group; L represents a level; D is the switch ID in the
L-level of the group G, and C is the ID in the k-cube. For
example, a MiKANTC(3, 4) has 2kn−2 = 18 3-cubes. There
are 270 compute nodes. The level 2 switches of group 0 and
group 1 form a KANTC(3, 4); the level 2 switches of group 1
and group 0 form another KANTC(3, 4). If 0 ≤ level < n−2,
a switch W

⟨G,L,Dn−2, ..., DL+1, DL, DL−1, ..., D0, Ck−1, ..., C0⟩

Connect to switch

⟨G,L+ 1, Dn−2, ..., DL+1, ∗′, DL−1, ..., D0, Ck−1, ..., C0⟩

Otherwise,L = n− 2 when connected to the switch〈
G,L, ∗′, Dn−3, ..., D1, D0, Ck−1, ..., C0

〉
where G is a bit transition of G and ∗′ is any value of
∗′ ∈ {0, 1, ..., k − 1}. For example, in MiKANTC(3, 4),
a switch W⟨0, 2, 1, 1, 0, 0, 0, 0, 0⟩ is connected to
switches ⟨1, 2, 0, 1, 0, 0, 0, 0⟩, ⟨1, 2, 1, 1, 0, 0, 0, 0⟩, and
⟨1, 2, 2, 1, 0, 0, 0, 0⟩ in a different group. When the source
and destination nodes are in the same group, MiKANTC acts
the same as KANTC.

C. Topological Properties of KANTC

Theorem 1. The radix of the switch of KANTC(k, n) is 2k.

Proof. KANTC(k, n) can be divided into upper and lower
parts, the upper part consists of n − 1 layers switches of a
k-ary n-tree, and the lower part consists of kn−2 cubes. The
switch radix of k-ary n-tree is 2k. In the k-cube part, each
intermediate switch is connected to k switches of a k-ary n-
tree and k other k-cube switches, and each switch connected to
k compute node is connected to other k switches. The switch
radix of the k-cube is also 2k. Therefore, the radix of the
switch of KANTC(k, n) is 2k.

Theorem 2. There are (2k − k)kn−1 computing nodes in
KANTC(k, n).

Proof. KANTC(k, n) only the lower half of the cube switches
are used to connect the compute nodes. There are kn−2 k-
cubes in total, and there are 2k − k switches connecting
computing nodes in a k-cube; each switch connects k com-
puting nodes. That is, the total number of computing nodes in
KANTC(k, n) is kn−2 × (2k − k)× k = (2k − k)kn−1.

Theorem 3. There are (n − 1)kn−1 + 2kkn−2 switches in
KANTC(k, n).
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Fig. 4. A 3-ary 4-tree 3-cube

Proof. In the upper half of KANTC(k, n), there are n − 1
layers, each layer has kn−1 switches, and in the lower half,
there are kn−2 k-cubes, and each cube has 2k switches. (n−
1)×kn−1+2k×kn−2 = (n−1)kn−1+2kkn−2 switches.

Theorem 4. There are (n−1)kn+(2k−1+2k−k)kn−1 links
in KATC(k, n).

Proof. The number of links includes links between switches
and links connecting compute nodes and switches. In the upper
half of KANTC(k, n), there are n − 1 layers, each layer has
kn−1 switches, each switch provides k links, and in the lower
half, there are kn−2 k-cubes, each k-cube has k2k−1 links,
and finally each k-cube has 2k − k switches for connecting
k nodes. Therefore, there are (n− 1)× kn + kn−1 × 2k−1 +
(2k − k) × kn−1 = (n − 1)kn + (2k−1 + 2k − k)kn−1 links
in KANTC(k, n).

Theorem 5. The diameter of KANTC(k, n) is 2n+ k.

Proof. The diameter is defined as the maximum distance
of the shortest-path between any two nodes. We call the
switch connected to the source compute node source switch
and the switch connected to the destination compute node
destination switch. Respectively called the source (destination)
intermediate switch of the source (destination) compute node,
the Source (destination) intermediate switch (SIS/DIS). The
longest shortest-path of KANTC consists of three parts: the
source switch to the SIS, the SIS to the DIS, and the DIS to
the destination switch. When a k-cube has multiple evenly dis-
tributed SIS/DIS to choose from, the longest and shortest path
is half the diameter of the k-cube, i.e., k/2. In KANTC(k, n),
the longest shortest-path between two intermediate switches is

the path where their Nearest Common Ancestor (NCA) is at
stage n−1. SIS will send packets at a distance of n-1 to their
NCA and n − 1 from NCA to DIS. Note that the distance
between the source (and destination) compute node and the
source (and destination) switch is 2. Therefore, the diameter
of KANTC(k, n) is k + 2(n− 1) + 2 = 2n+ 2k.

D. Topological Properties of MiKANTC
Theorem 6. The radix of the switch of MiKANTC(k, n) is 2k.

Proof. MiKANTC(k, n) is divided into two parts, the upper
part MiKANT is composed and the lower part consists of
2kn−2 k-cubes. The radix of switches of MiKANT is 2k. In
the k-cube part, each intermediate switch is connected to k
switches of MiKANT and k other k-cube switches, and each
switch connecting a computational node is connected to the
other k switches and k computational nodes. The radix of k-
cube is also 2k. That is, the radix of MiKANTC(k, n) is 2k.

Theorem 7. There are 2(2k − k)kn−1 compute nodes in
MiKANTC (k, n).

Proof. MiKANTC(k, n) has only the lower half of the cube
switches used to connect the computational nodes. There are
a total of 2kn−2 k-cubes, and there are 2k − k switches in
a k-cube to connect compute nodes; each switch connects k
compute nodes. That is, the total number of computational
nodes in MiKANTC(k, n) is 2kn−2 × (2k − k)× k = 2(2k −
k)kn−1

Theorem 8. There exist (2n− 4)kn−1 + 2k+1kn−2 switches
in MiKANTC(k, n).
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TABLE I
COMPARISON OF NETWORK TOPOLOGICAL PROPERTIES

Parameters HC(k) k-ary n-tree MiKANT(k, n) KANTC(k, n) MiKANTC(k, n)

Nodes 2k kn 2kn (2k − k)kn−1 2(2k − k)kn−1

Switches 2k nkn−1 (2n− 2)kn−1 (n− 1)kn−1 + 2kkn−2 (2n− 4)kn−1 + 2k+1kn−2

Links k2k−1 nkn (2n− 1)kn
(n− 1)kn

+(2k−1 + 2k − k)kn−1
(2n− 3)kn

+(3× 2k − 2k)kn−1

Radix/Degree k 2k 2k 2k 2k

Diameter k 2n 2n 2n+ k 2n+ k

Proof. In the top half, there are 2n − 4 layers with kn−1

switches each, and in the bottom half, there are 2kn−2 k-cubes
with 2k switches each. Thus, there are (2n − 4) × kn−1 +
2 × 2k × 2kn−2 = (2n − 4)kn−1 + 2k+1kn−2 switches in
MiKANTC(k, n).

Theorem 9. There exist (2n−3)kn+(3×2k−2k)kn−1 links
in MiKANTC(k, n).

Proof. In the upper half of MiKANTC(k, n), there are 2n−3
layers with kn−1 switches per layer, and each switch provides
k connections. In the lower half, there are 2kn−2 k-cubes,
each k-cube has k2k−1 links, and finally, each k-cube has
2k−k switches for connecting k. Therefore, MiKANTC(k, n)
has (2n− 3)× kn + kn−1 × 2k + 2(2k − k)× kn−1 = (2n−
3)kn + (3× 2k − 2k)kn−1 links.

Theorem 10. The diameter of MiKANTC(k, n) is 2n+ k.

Proof. In MiKANTC(k, n), the longest shortest-path is the
path between two nodes with Ci = 1 in the same group
with 0 ≤ i ≤ n − 1, their NCAs is located at n − 2 stage
of the other group. The path consists of three parts: 1. source
switch to the SIS. 2. SIS to the DIS. 3. DIS to the destination
switch. The length of the longest shortest-path for both 1.
and 3. is k/2, and the length of the longest shortest path for
2. is 2(n − 1). Therefore, the diameter of MiCAT(k, n) is
k+2(n− 1)+2 = 2n+ k, where +2 is the distance between
the source (and destination) computational node and the source
(and destination) switch.

Table. I summarizes the topological properties of k-
cubes, k-ary n-trees, MiKANT(k, n), KANTC(k, n), and
MiKANTC(k, n). As we can see from the table, KANTC
and MiKANTC achieve more computational nodes connected
with fewer switches and links than the traditional k-ary n-tree
and MiKANT by increasing only the diameter of k. In the
next section, we will evaluate the detailed performance of the
topology.

IV. ROUTING ALGORITHM

This section gives the routing algorithms of the
KANTC(k, n) and MiKANTC(k, n).

A. Routing Algorithm for KANTC(k, n)

There are many routing algorithms for traditional k-ary n-
trees and hypercubes. As mentioned in the previous section,
we use a static method to select all intermediate switches and
store their IDs in a list I = [Ik−1, Ik−2, ..., Ik−2]. So for the
lower half of KANTC (the hypercube part), if the source node
and the destination node are in different cube’s switches, the
routing of KANTC(k, n) is to find the shortest path to the
intermediate switch. If there are multiple shortest paths, select
one at random. If the source node and the destination node
are in the same cube’s switch, the source node will send the
packet directly to the destination node. For the upper part,
the basic idea is to find the NCAs of the source intermediate
switch and the destination intermediate switch. The route from
the source switch to the destination switch can be considered
as two parts: SIS to NCA and from NCA to the DIS. There
are several paths to the NCA, but the path from the NCA to
the destination switch is deterministic.

The routing algorithm of KANTC(k, n) is based on the
current switch/node and the destination node ID. We use
W = ⟨LW ,Wn−2, ...,W1,W0, Ck−1, ..., C0⟩ to represent the
current switch/node ID. Packets will be received by des-
tination nodes T = ⟨LT , Tn−2, ..., T1, T0, Fk−1, ..., F0⟩. If
Wn−2, ...,WLW ̸= Tn−2, ..., TLW . This means that the current
switch/node has not reached the NCA yet. We need to send
the packet to the upper layer switch through the intermediate
switch in I . Otherwise, the data packet has reached the NCA,
and the routing enters the downward phase. At this stage,
routing is deterministic. It must choose to send the packet to
the destination switch. In the going to NCA phase, a switch
W in the LW level:

W = ⟨LW ,Wn−2, ...,WLW+1,WLW , TLW−1, ..., T0, C⟩

send packets to switch U that is closer to T than W

U = ⟨LU ,Wn−2, ...,WLW+1, TLW , TLW−1, ..., T0, C⟩

where C represents Ck−1, ..., C0, WLW is changed to the
TLW . If the LW of W equals 0, the current switch/node and
the destination node are in the same cube. The packet will be
sent directly to the destination node T .

– 26 –



This routing algorithm is formally given in Algorithm 1,
where T+

LW is the port label of switch W, which is linked
to a switch with a phase equal to LW + 1 (increasing level).
Likewise, T−

LW is the port label of switch W , which is linked
to a switch with a phase equal to LW − 1(decrementing
level). The packets will be sent to the NCA of the source
and destination switches via T+

LW . In the downward phase
(reaching the NCA), the packet will be sent to the destination
switch via T−

LW .

Algorithm 1 KANTC Routing
Input: packet = ⟨T, data⟩ ; /* received packet which will be sent to T*/
W = ⟨LW ,Wn−2, ...,W0, Ck−1, ..., C0⟩ ; /* current switch/node ID */
I = [Ik−1, Ik−2, ..., Ik−2]; /*intermediate cube list*/
T = ⟨LT , Tn−2, ..., T1, T0, Fk−1, ..., F0⟩ ; /* destination node ID */
if (Wn−2, ...,WLW ̸= Tn−2, ..., TLW ) /* going to NCA */

send packet to IS; /* to the source intermediate switch*/
if (Ck−1, ..., C0 in I) /* reached source intermediate switch*/

send packet to T+
LW ; /* increasing level*/

else
if(Ck−1, ..., C0 = 0) /* going to NCA */

send packet to T+
LW ; /* increasing level*/

endif
else /* going to destination intermediate switch from NCA */

if (LW > 0) /* current switch not in level 0 */
send packet to T−

LW ; /* decreasing level */
else

if(Wn−2, ...,W1 = Tn−2, ..., T1) /* Destination node in the same cube */
send packet to T; /* to destination node */

endif
endif

endif

B. Routing Algorithm for MiKANTC(k, n)
MiKANTC(k, n) routing algorithm is based on

MiKANT(k, n) and hypercube routing algorithm. Similar
to KANTC(k, n), We denote the current switch/node ID
by W = ⟨GW , LW ,Wn−2, ...,W1,W0, Ck−1, ..., C0⟩. and
T = ⟨GT , LT , Tn−2, ..., T1, T0, Fk−1, ..., F0⟩ represents the
destination node ID. When W and T are in the same group,
the routing algorithm of MiKANTC(k, n) is the same as
KANTC(k, n). If W and T are in different groups, the packet
will be sent to level n − 2 of GW (T+

LW ) through the source
switch. Then, from T+

LW to the destination switch and finally
to the destination node. This routing algorithm is formally
given in Algorithm 2.

C. Packet Latency
We first conducted a small-scale simulation of the routing

algorithm and evaluated the average packet latency of KANTC
and MiKANTC at k = 3 and n = 4 by simulation. We
evaluate the simulations in a uniform pattern per clock cycle.
In uniform traffic, the destination addresses of packets are
randomly assigned. For each packet within one clock cycle,
if the switch has buffers available, the packet can be sent
to another switch/node. Otherwise, the packet will wait for
one clock cycle. We set the traffic load λ in the range of
0.05 and 1.00 in units of 0.05. On each clock cycle, N × λ
compute nodes send packets to their destination nodes, where
N is the number of nodes in the system. The simulation
terminates when each destination node receives an average
of 200 packets.

Algorithm 2 MiKANTC Routing
Input: packet = ⟨T, data⟩ ; /* received packet which will be sent to T*/
W = ⟨GW , LW ,Wn−2, ...,W0, Ck−1, ..., C0⟩ ; /* current switch/node ID */
I = [Ik−1, Ik−2, ..., Ik−2]; /*intermediate cube list*/
T = ⟨GT , LT , Tn−2, ..., T1, T0, Fk−1, ..., F0⟩ ; /* destination node ID */
if(GW ̸= GT ) /* W, T: different groups */

send packet to IS; /* to the source intermediate switch*/
if (Ck−1, ..., C0 in I) /* reached source intermediate switch*/

send packet to T+
LW ; /* increasing level*/

else
if(Ck−1, ..., C0 = 0) /* going to NCA */

send packet to T+
LW ; /* increasing level*/

endif
else

if (Wn−2, ...,WLW ̸= Tn−2, ..., TLW ) /* going to NCA */
send packet to IS; /* to the source intermediate switch*/
if (Ck−1, ..., C0 in I) /* reached source intermediate switch*/

send packet to T+
LW ; /* increasing level*/

else
if(Ck−1, ..., C0 = 0) /* reaching NCA */

send packet to T+
LW ; /* increasing level*/

endif
else /* going to destination intermediate switch from NCA */

if (LW > 0) /* current switch not in level 0 */
send packet to T−

LW ; /* decreasing level */
else

if(Wn−2, ...,W1 = Tn−2, ..., T1) /* Destination node in the same cube */
send packet to T; /* to destination node */

endif
endif

endif
endif
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Fig. 5. packet latencies of KANTC(3, 4) and MiKANTC(3, 4)

Fig. 5 illustrates the packet latency for KANTC(3, 4) and
MiKANTC(3, 4), respectively. The vertical axis represents the
average packet delay in clock cycles, and the horizontal axis
represents the traffic load λ. The buffer size is 8. We can see
that our proposed algorithm works efficiently when the load
is below 40%.

V. PERFORMANCE EVALUATION

In this section, we evaluate the cost, performance, and path
diversity of KANTC(k, n) and MiKANTC(k, n).
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Fig. 6. Cost ratios of switches and links to k-ary n-tree
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Fig. 7. Cost ratios of switches and links to MiKANT(k, n)

A. Cost Ratio

A k-ary n-tree has kn nodes and nkn−1 switches. That
is, a node requires nkn−1/kn switches. A KANTC(k, n) has
(2k−k)kn−1 nodes and (n−1)kn−1+2kkn−2 switches. The
switch cost ratio of a KANTC(k, n) to a k-ary n-tree is

((n− 1)kn−1 + 2kkn−2)/(2k − k)kn−1

nkn−1/kn
=

2k − k + kn

n(2k − k)

The link cost ratio of a KANTC(k, n) to k-ary n-tree is

((n− 1)kn + (2k−1 + 2k − k)kn−1)/(2k − k)kn−1

nkn−1/kn

=
(n− 2)k2 + 3× 2k−1k

n(2k − k)

Similarly, we can emanate expressions for computing the
switch and link cost ratio of MiKANT(k, n). We plot
the switch and link cost ratios of KANTC(k, n) and

MiKANTC(k, n) versus k-ary n-tree and MiKANT(k, n) in
fig. 6 and fig. 7, respectively. For convenience, we set n = k
in both figures. We can see that both KANTC(k, n) and
MiKANTC(k, n) have lower switch and link cost ratios than
k-ary n-tree and MiKANT(k, n) when n = k ≥ 4. For
k = n = 8, KANTC saves 84.27% switches and 78.23%
links than k-ary n-tree; 82.03% switches and 76.77% links
than MiKANT(k, n). Compared with k-ary n-tree, MiKANTC
saves 84.68% of switches and 78.43% of links; compared with
MiKANT(k, n), it saves 82.49% of switches and 76.99% of
links.

B. Relative Cost Performance
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Fig. 8. RCP comparison of KANTC(k, n)
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Fig. 9. RCP comparison of MiKANTC(k, n)

Suppose we build the network topology KANTC(k, n) and
a MiKANTC(k, n) with two given node numbers N1 =
(2k − k)kn−1 and N2 = 2(2k − k)kn−1, respectively. We
would like to know how to decide the values of k and n
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so that KANTC(k, n) and MiKANTC(k, n) can achieve high
performance at a low cost. Generally, a larger k will increase
the switching cost, and a larger n will increase communication
time.

To make a good trade-off between the cost and perfor-
mance of KANTC(k, n) and MiKANTC(k, n), we define the
relativecostperformance(RCP ) of the hypercube as fol-
lows:

RCP1 = 2k × (2n+ k)(log2 N1/p+ p)× (log2 N1/p+ 2)

RCP2 = 2k × (2n+ k)(log2 N2/p+ p)× (log2 N2/p+ 2)

Among them, RCP1 and RCP2 refer to the RCP of
KANTC(k, n) and the RCP of MiKANTC(k, n), respectively;
2k is the radix of KANTC(k, n) and MiKANTC(k, n), which
affects the cost of hardware and software; 2n + 2k is the
diameter of KANTC(k, n) and MiKANTC(k, n), which affects
the communication performance; log2 N/p is the size of the
hypercube; p represents the number of ports in the router
connecting computing nodes. The radix and the diameter of
a k-cube are k, but in a practical implementation, a router
has p ports for connecting compute nodes. The diameters of
KANTC(k, n) and MiKANTC(k, n) contain links connecting
compute nodes and switches. For a fair comparison, we let the
diameter of the k-cube be k + 2.

Fig. 8 and fig. 9 illustrate the RCPs of KANTC(k, n) and
MiKANTC(k, n) for k-cubes in the case of 2 ≤ n ≤ 7,
p = 1, respectively. For a given n, we vary the value of k
to implement systems of different scales. Lower values in the
curve mean the system achieves higher performance at lower
hardware cost. A value less than 1 means the system is better
than a hypercube. For example, when we build a system of
5412096 nodes with MiKANTC(6, 7), the RCP is 0.421. For
a system of a given size, we can choose appropriate k and n
numerically so that the RCP of the system will be lower.

C. Path Diversities
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Fig. 10. Path diversities

In a network topology, path diversity is an important
property. A high path diversity topology will provide lots of
paths between any two nodes, providing more fault tolerance
choices. We define the path diversity (PD) of the network as
follows.

PD =
P̃

N

where P̃ is the average number of shortest paths and N is the
number of nodes in the system.

First, we need to calculate the PD of the k-cube. For any
two nodes with distance i in the k-cube (0 ≤ i ≤ k), there
are i! shortest paths. For any node in the k-cube, there is a C1

k

node at a distance of 1, and there is 1! shortest path, there are
C2

k nodes at distance 2, there are 2! shortest paths, there are
Ci

k nodes at distance i, there is i! shortest paths, there are Ck
k

nodes at distance k, there are k! shortest paths. P̃ of k-cube
is

P̃cube = (

k∑
i=1

Ci
k × i!)/2k =

k∑
i=1

k!

i!× 2k

The path diversity PD of a k-cube is

PDcube =
P̃cube

Ncube
=

k∑
i=1

k!

i!× 4k

In k-ary n-tree, path diversity is only related to switches.
The path is fixed from a compute node (switch) to a switch
(compute node). The number of shortest paths depends on the
level of NCA. If the NCA is at level i, there are ki paths for
the source switch to send packets to one of the NCAs. The
average number of paths can be calculated as follows. For
n ≥ 2, each switch has k − 1 switches with k1 paths, k2 − k
switches with k2 paths, ...., kn−1 − kn−2 switches with kn−1

paths. That is, the P̃ of the k-ary n-tree is

P̃kant = [

n−1∑
i=1

ki(ki − ki−1)]/kn−1 =
kn − 1/kn−2

k + 1

The path diversity PD of the k-ary n-tree is

PDkant =
P̃kant

Nkant
=

1− 1/k2n−2

k + 1

The path diversity of MiKANT(k, n) is similar to a k-ary
n-tree. There are k − 2 paths for the source switch to send
packets to different groups of n−2 switches. Therefore, P̃ of
MiKANT(k, n) is

P̃mikant = [

n−1∑
i=1

ki(ki − ki−1) + kn−2 × kn−1]/2kn−1

=
kn − 1/kn−2

2(k + 1)
+

kn−2

2

The path diversity PD of MiKANT(k, n) is

PDmikant =
P̃mikant

Nmikant
=

1− 1/k2n−2

4(k + 1)
+

1

4k2
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To compute P̃ for KANTC(k, n), we have to consider the
following two cases. Whether the source node and destination
node are in the same k-cube, The same probability is 1/kn−2,
since there are k intermediate nodes to choose from in the
hypercube part of KANTC, P̃0 = kP̃cube. The probability of
not being the same is 1 − 1/kn−2, P̃1 = k2P̃ 2

cube × P̃kant.
So,P̃ of KANTC(k, n) is

P̃kantc = P̃1(1−
1

kn−2
) + P̃0

1

kn−2

= k2P̃ 2
cubeP̃kant +

kP̃cube − P̃ 2
cubeP̃kant

kn−4

The path diversity PD of KANTC(k, n) is

PDkantc =
P̃kantc

Nkantc

=
k2P̃ 2

cubeP̃kant

Nkantc
+

kP̃cube − P̃ 2
cubeP̃kant

Nkantckn−4

P̃ of MiKANTC(k, n) is similar to KANTC(k, n). It re-
places P̃kant with P̃mikant, and changes the probability of
the same to 1/(2kn−2) and the probability of the same to
(2kn−2 − 1)/(2kn−2). P̃ of MiKANTC(k, n) is

P̃mikantc = k2P̃ 2
cubeP̃mikant +

kP̃cube − P̃ 2
cubeP̃mikant

2kn−4

The path diversity PD of MiKANTC(k, n) is

PDmikantc =
P̃mikantc

Nmikantc

=
k2P̃ 2

cubeP̃mikant

Nmikantc
+

kP̃cube − P̃ 2
cubeP̃mikant

2Nmikantckn−4

Fig. 10 plots the path diversities of the k-cube, k-ary
n-tree, MiKANT(k, n), KANTC(k, n), and MiKANTC(k, n)
with n = 8. We can see that the link diversity of KANTC(k, n)
and MiKANTC(k, n) is better compared to other topologies
due to the increase in paths, which means that they have better
routing performance and fault tolerance.

VI. CONCLUSIONS

This paper proposes two new interconnection networks,
KANTC and MiKANTC. Both proposed networks achieve
high performance and low cost. We propose routing algorithms
and test it under small-scale simulations, then evaluate the
two networks’ cost ratios, relative cost performance, and path
diversities. The results show that KANTC and MiKANTC
have lower hardware costs and higher path diversity than the
traditional fat-tree. So our future work is to propose better
performing routing algorithms and simulate them on larger
scale networks.
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