
A Scheme Reducing Task Drops for Data
Dependent Tasks on Mixed Criticality Systems

1st Reo Nagura
Graduate School of Science and Technology

Keio University
Kouhoku-ku, Yokohama-shi, Kanagawa, Japan, 223-8852

nagura@ny.ics.keio.ac.jp

2nd Nobuyuki Yamasaki
Graduate School of Science and Technology

Keio University
Kouhoku-ku, Yokohama-shi, Kanagawa, Japan, 223-8852

yamasaki@ny.ics.keio.ac.jp

Abstract—In embedded real-time systems, some tasks have
varying execution times due to data dependency such as the
number of input data from outside. Mixed criticality systems
(MCS) can deal with these tasks by discarding non-critical tasks
to obtain the computing resource when critical tasks overrun.
However, there are cases in which the execution time of the task
can be estimated as a form of function that has computation
order depending on the algorithm inside it. Classic MCS model
has difficulty dealing with this kind of task because it needs to
estimate the execution time in a certain number of levels, two in
most cases. We define a novel MC task model which has a worst
case execution time as a function and propose a run-time task
control scheme that selects the non-critical tasks which should
be discarded by calculating the amount of utilization required by
critical tasks overrun. We evaluate its performance in simulation
and demonstrate its effectiveness.

Index Terms—real-time systems, processor scheduling, mixed
criticality systems

I. INTRODUCTION

One of the recent trends in embedded real-time systems
is the systems that integrate the components with different
importance or criticality levels into one hardware platform.
These systems are called Mixed Criticality Systems (MCS),
and are supported on safety-critical systems such as avionics
[1] systems.

Since the original concept of MCS was proposed [2], many
studies have been published. In a typical MCS, tasks are
classified into two criticality levels (high or low) based on
whether violating a time constraint has a significant impact
on the system. High-criticality tasks have multiple WCETs
estimated at different pessimism levels, while low-criticality
tasks have only one WCET. If all high-criticality tasks are
completed within the optimistic WCET, the system remains
in normal mode. However, if one of the high-criticality tasks
continues to execute beyond the optimistic WCET (overrun),
the system changes mode to a higher level and discards all
low-criticality tasks, so that the overrun high-criticality task
continues to run until the pessimistic WCET.

Therefore, MCS can handle tasks with varying WCET. For
example, some tasks have data dependency such as the number
and the size of external input data. A task maintains its normal
state as long as the number of inputs is less than a pre-
defined threshold value that is estimated to be the normal

value. However, if the number of inputs exceeds the threshold
value, the task enters an emargent state and may cause sys-
tem overload. Such data-dependent tasks include multimedia
processing which depends on image size, network processing
which depends on the number of nodes, and data placement
processing such as sorting. For such tasks, WCET is expressed
as a function of the number of input data and can be estimated
by internal algorithms or experimental measurements.

However, there are several problems when considering
handling such data-dependent tasks in a general MCS.

First, in many existing studies, the WCET of a high-
criticality task is estimated at a certain number of levels, in
most cases two levels, even if it can be estimated by the
WCET functional formula, resulting in the waste of processor
utilization.

Second, as a fundamental problem in MCS, a typical MCS
study uses system-level mode switching to discard all low-
criticality tasks when one high-criticality task exceeds its
optimistic WCET. This leads to a very low execution rate
of low-criticality tasks and decreases the QoS of the whole
system. This is because it is assumed that all high-criticality
tasks overrun simultaneously and continue to run at pessimistic
WCET for some time. However, this is not realistic because
tasks that depend on different types of sensors and devices
should overrun independently of each other.

To address these issues, we offer the following suggestions.
First, we present the novel MC task model in which the WCET
is a function of the number of input data. While the traditional
MC task model is a non-clairvoyant task model that assumes
that whether a task will overrun cannot be predicted until it
overruns, this model is a kind of clairvoyant task model [3]
that the number of input data is given at task release and its
WCET can be calculated at that moment. This assumption
is practical for data-dependent tasks because this type of task
needs to obtain the size of its input from the I/O device before
it is released from the scheduler.

Second, to avoid excessive degradation of QoS, we propose
a scheme reducing the low-criticality task drops by selecting
tasks to be discarded in the time slot required by the overrun
high-criticality task. By introducing a task-level mode switch
[4], we can handle high-criticality tasks that overrun inde-
pendently of each other and low-criticality tasks that should

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 13, Number 1, pages 1–7, January 2024

– 1 –

not be discarded at the same time. By considering the task
model described above, the proposed method can calculate
how many timeslots are required when high-criticality tasks
overrun at release. Thus, it is possible to estimate the minimum
number of jobs that should be dropped to meet the required
resources. The virtual deadline of the Pfair (Proportionate
fairness) scheduling algorithm is used to calculate at least
how many timeslots each low-criticality task will use within
a certain time range.

In summary, the contribution of this paper is below.
• We present the novel task model which has a functional

WCET.
• We propose the task-selecting scheme to minimize the

number of jobs that should be dropped by calculating
required timeslots using the task model above.

• Our evaluation shows that our scheme improves the drop
rate of low-criticality tasks.

II. RELATED WORK

Since Vestal proposed the concept of MCS [2], a variety
of research on MCS has been studied. The mainstream of
MCS research has been to improve the scheduling algorithms
that guarantee schedulablity while providing the mode switch
mechanism of MCS. For example, EDF-VD (Earliest Deadline
First Virtual Deadline) [5] has been studied in both uniproces-
sor and multiprocessor theoretical MCS research. EDF-VD is
an extension of EDF [6] that gives higher priority to tasks with
shorter deadlines. One of the difficulties of MCS scheduling
is how to handle carry-over jobs that trigger mode switch by
overrun. If, at the moment of overrun, the remaining execution
time is longer than the time remaining to the deadline, the
job will certainly overrun even if all low-criticality tasks are
dropped. To avoid this problem, many studies in the EDF
scheduling scheme use virtual deadlines that are shorter than
the real deadlines to raise the priority of high-criticality tasks,
and provide them as much margin as possible for overruns.
However, EDF scheduling on multiprocessors is inefficient
compared to optimal scheduling algorithms. In addition, the
introduction of virtual deadlines results in tighter schedulable
utilization and reduced task set acceptability. Several studies
have attempted to remedy this drawback [7] [8] [9].

Another trend in MCS research is to solve the problem of
practical situations. As mentioned earlier, conventional MCS
triggers a mode switch after a single overrun and then drops all
low-criticality tasks. In addition, some theoretical studies do
not consider mode return from HI, assuming that overruns are
extremely rare events. These are problems when using such
MCS in real-world applications. Our study is of this kind and
attempts to reduce the excessive dropping of low-criticality
tasks.

There are some studies that reduce the task drops. Huang
et al. proposed an offline mapping between low-criticality
and high-criticality tasks using ICG (Interference Constraint
Graph) [4], and Gu et al. presented an offline task grouping
for low-criticality task drops [10]. As the online scheme, Lee
et al. proposed an MC-ADAPT scheme that selects task drops

using EDF-VD based runtime schedulablity analysis [11]. In
our method, task drops are selected using an online algorithm.

III. MODEL

A. The overview of conventional MCS

Before presenting our scheme, we describe the conventional
MCS. We assume the multiprocessor system with identical m
cores, two system modes (LO and HI), and two task criticality
levels (low and high).

Task Model. We consider an implicit-deadline periodic task
system (denoted τ) of n MC tasks. Each of MC tasks τi is
defined as (Ti, C

LO
i , CHI

i , χi), where
• Ti: period
• CL

i : WCET estimated in LO mode (LO-WCET)
• CH

i : WCET estimated in HI mode (HI-WCET)
• χi: criticality level of task (low or high)

MC task model is characterized by two WCETs for each
system mode: CL

i is the normal execution time in LO mode,
called LO-WCET; CH

i is the emergency execution time in
HI mode, called HI-WCET. As mentioned earlier, we have
CL

i < CH
i for high-criticality tasks and CH = 0 for low-

criticality tasks since LO-WCET is an optimistically estimated
WCET, and HI-WCET is a pessimistically estimated WCET
for high-criticality tasks, and low-criticality tasks are dropped
in HI mode. For notational convenience, we refer to high-
criticality tasks as hi-tasks, and low-criticalitys task as lo-tasks.

Utilization of each task τi is defined respectively in each
system mode below. 

uL
i =

CL
i

Ti
(1)

uH
i =

CH
i

Ti
(2)

Utilization of the whole task system τ is also defined in each
system mode below.

UL = UL
lo + UL

hi =
∑

τi|χi=low

uL
i +

∑
τi|χi=high

uL
i (3)

UH = UH
hi =

∑
τi|χi=high

uH
i (4)

HI mode utilization UH does not have UH
lo , since CH = 0

holds for all lo-tasks.
System Behavior. Fig.1 shows the scheduling of the con-

ventional MCS. Initially, the system operates in LO mode.
All tasks are executed in LO mode at LO-WCET. When a
hi-task is executed beyond LO-WCET (overrun), the system
mode changes from LO to HI. At that moment, the running
lo-task is interrupted and immediately discarded. In HI mode,
the lo-task is not released and the hi-task can be executed in
HI-WCET. As mentioned earlier, some theoretical studies do
not consider the conditions for the mode transition from HI to
LO, but here we assume that the HI mode can be returned if
none of the hi-tasks overrun.

As for the scheduling algorithm, many studies adopt the
earlier EDF-VD [5]. The details differ among the studies, but

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 13, Number 1, pages 1–7, January 2024

– 2 –

Fig. 1: The scheduling example of the conventional MCS.
When a hi-task overruns, the system enters HI mode, and lo-
tasks are immediately discarded and not released in HI mode.

in general, the virtual deadline T̂i = x · Ti(0 < x < 1) is
assigned to every hi-task in LO mode, which increases their
priority in EDF scheduling. The value of x can be calculated
by using schedulability analysis both in LO and HI mode.

B. The design of proposed model

Next, we explain our proposed scheme, a Data-dependent
MC (DMC) task model, and an online method reducing lo-task
drops.

Target System. Similar to the conventional MCS described
above, we consider a multiprocessor system with identical
m cores and two task criticality levels. However, to address
the problem described in the previous section, instead of the
system-level mode switch, we introduce the task-level mode
switch, described below. Thus, the system need not have the
system mode; each task has its mode.

DMC Task Model. To efficiently handle data-dependent
tasks whose execution time depends on the amount of external
input data, we define a novel task model, the Data-dependent
MC (DMC) task model. Each of DMC task τi is represented
as (Ti, Ci(n), li, hi, χi,modei), where

• Ti: period
• Ci(n): WCET (function of the number of inputs n)
• li: the maximum number of inputs in LO mode
• hi: the maximum number of inputs in HI mode
• χi: criticality level of task (high or low)
• modei: task-level mode (LO or HI)

The main feature of the DMC task model is that WCET
Ci(n) is a function of the number of input data , whereas
in conventional MC, WCET CL

i , CH
i are fixed values for

each system mode. The number of input data n is given at
the release time of each job, and the job’s WCET can be
calculated simultaneously using Ci(n).

Each Ci(n) can be estimated with both the computational
order of internal algorithms and experimental measurements.
For example, the computational order of the bubble sort is

generally o(n2). Thus, the execution time of the bubble sort
task can be formulated as A·n2+B, where A is the constant of
proportionality, and B is the time of pre-processing and post-
processing such as initialization and file manipulation sections.
Each A and B is predicted from experimental measurements.

The parameters li, hi are the acceptable limits of n in the
task mode (LO, HI) described below. li is used in the condition
of the task-level mode switch and Ci(li)/Ti is used as a
normal utilization of the task τi in the task set acceptance tests,
performed before system startup. hi represents the maximum
utilization of the task, and we have at least Ci(hi) ≤ Ti since
the utilization of the task must not exceed 1. Note that since
we assume only hi-tasks to be data-dependent, Ci(n) for lo-
tasks is independent of n, and li, hi are meaningless.

Task-level Mode Switch. The DMC task model applies
the task-level mode switching mechanism [4] rather than
system-level mode-switching. Unlike previous studies, the
tasks should be managed individually in practical situations,
since all hi-tasks do not overrun simultaneously, and not all
lo-tasks should not be abandoned by a single overrun of the
hi-tasks. How task-level modes work is illustrated in Fig.2.
Mode switching is performed by the scheduler.

/2
�DFWLYH�

+,
�'URSSHG�

�,QLWLDO�
'URSSHG�E\

KL�WDVNV

5HWXUQHG�E\

VFKHGXOHU

(a) Lo-task mode

(b) Hi-task mode

Fig. 2: Task-level mode in each task criticality. For lo-tasks, the
mode indicates whether the task is currently active or dropped.
For hi-tasks, the mode indicates whether the task is currently
overruns (n > li) or not (n ≤ li).

Based on the above, the system behavior is as follows.
• Initially, all tasks operate in LO mode.
• When a hi-task overruns, switch its mode from LO to HI

and switch the mode of some lo-tasks from LO to HI.
• When an overrunning hi-task finishes, switch its mode

from HI to LO.
• At the next release time of dropped lo-tasks, switch their

modes from HI to LO.
Propotionate Fairness Scheduling. In our model,

Propotionate-fairness (Pfair) scheduling [12] [13] is applied for

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 13, Number 1, pages 1–7, January 2024

– 3 –

both high schedulability and the algorithm of our scheme. Pfair
scheduling is one of the optimal multiprocessor scheduling
algorithms, which guarantees that every task set within the
maximum utilization of the system can be scheduled without
missing deadlines. The Pfair algorithm schedules each task to
run proportionally from its release time to its deadline, subject
to the following conditions.

S(τi, t) =

{
1 τi executed in [t, t+ 1)
0 τi not executed in [t, t+ 1)

(5)

lag(τi, t) = Ui · t−
t−1∑
u=0

S(τi, u) (6)

∀τi, t :: −1 < lag(τi, t) < 1 (7)

Fig. 3: Pfair scheduling. The distance to the line connecting
Ci and Ti is lag(τi, t). lag(τi, t) must be in the range (−1, 1).

Fig.3 shows the meaning of these conditions. Scheduling
that satisfies condition (7) is defined as to be Pfair. Then Pfair
scheduling is proved to be optimal scheduling. To schedule
tasks as Pfair, each task τ is divided as a union of the subtasks
to be executed for 1 time unit. The jth subtask τ j of the task
τi has its own virtual release time ˆ

rji and virtual deadline ˆ
dji .

ˆ
rji = ⌊j − 1

Ui
⌋ = ⌊ (j − 1) · Ti

Ci
⌋ (8)

ˆ
dji = ⌈ j

Ui
⌉ = ⌈j · Ti

Ci
⌉ (9)

By scheduling these subtasks based on EDF manner using
virtual parameters above, the scheduling is proved to be Pfair.

Although Pfair scheduling offers the highest schedulability,
it has highly frequent context switches as the trade-off, which
results in huge overhead for saving context information, and
task migrations in a multiprocessor. Some studies attempt to
improve them [14] [15] [16].

In addition, since the value of WCET directly affects the
number of subtasks and their respective timing constraints,
Pfair scheduling does not work well with conventional MCS,
which runs up to LO-WCET and then rapidly increases the
value of WCET. However, in this model, Pfair scheduling is

applied because it assumes that WCET can be calculated from
the number of input data at task release and does not require
a virtual deadline mechanism such as EDF-VD.

IV. SCHEME REDUCING TASK DROPS

In this section, we describe the main topic of our study, a
scheme for reducing task drops. Our approach is performed at
the release of each hi-task job.

Fig. 4: Operation in hi-tasks release time

Fig.4 illustrates the operational flow of this scheme. When
the hi-task τi is released at timing t, given the number of
inputs n. Whether τi overruns is predicted by the condition
n > li. If n ≤ li, τi runs with normal execution time, and
no mode switch occurs. Otherwise, τi enters the emergent
state and modei switches from LO to HI. However, since Pfair
scheduling is applied in this model, there is no need to drop
tasks as long as the total utilization does not exceed the number
of cores. This can be calculated by the following equation.

(current utilization) +
Ci(n)− Ci(li)

Ti
> (# of cores) (10)

When the condition (10) is satisfied, some lo-tasks need to be
dropped due to the overrun of the hi-tasks. In the conventional
MCS, once a hi-task overruns, the system-level mode switches
unconditionally, resulting in an excessive number of lo-tasks
being dropped. To avoid this problem, we consider selecting
the minimum number of lo-tasks jobs to obtain the time slots
required for overruns. Therefore, the next step is to calculate
Ci(n) − Ci(li) to obtain the required number of time slots
slots rq. Then, we consider finding lo-task jobs that will run
for at least slots rq by the algorithm FIND DROP.

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 13, Number 1, pages 1–7, January 2024

– 4 –

Fig. 5: Flowchart of FIND DROP algorithm

Fig.5 illustrates the FIND DROP algorithm. The approach
of this algorithm is pretty simple, making a room in [t, t+Ti)
for hi-task τi to overrun. To do that, the scheduler needs to
know how much time slots each lo-task will spend in [t, t +
Ti). As a premise, this algorithm requires a list of lo-tasks in
ascending WCET order lo list and the number of required
slots slots rq as an argument. First, for the current job of
each lo-task in the lo list, unless it has been already dropped
nor it has not been released yet, how many subtask windows
exist in [t, t+ Ti) is calculated (the blue part of Fig.5).

Fig. 6: Time slot calculation using virtual deadline of subtasks

Fig.6 shows how to calculate the number of subtask win-
dows in [t, t+Ti). Unlike other scheduling algorithms, in Pfair
scheduling, how each task will be scheduled can be predicted
in the form of the subtask window. Thus, each task is executed
in [t, t + Ti) with at least as many subtasks in the range. In
the case of τk in Fig.6, the deadline of the jth subtask to the
deadline of the (j + n)th subtask lies within [t, t+ Ti), so the
current job of τk will execute at least n time slots within this
range. Since the deadline for (j + n + 1)th subtask is after

t+ Ti, the subtask may but is not guaranteed to be executed
by t+ Ti.

When a slot of some subtask τ jk is found to be able to fill
the slot rq during this operation, the mode of τ jk (modek) is
changed from LO to HI, and then the job is discarded until
the next job is released.

If there is no lo-task to satisfy the slot rq after searching
every task in lo list, the operation proceeds to the right side of
Fig.5. As the next step, the lo list is sorted in the descending
order of the slot calculated in the previous step. Then, the
following steps are repeated until a combination of lo-tasks
that fills slot rq is found.

1) Drop the first task in lo list, remove it from lo list,
and subtract its slot from slot rq.

2) Search the remaining tasks in lo list.
3) If there is a task whose slot satisfies condition slot ≥

slot rq, drop that task, and then the operation ends.
4) Otherwise, repeat from 1).

As mentioned earlier, the FIND DROP algorithm is only
performed when the the task set utilization overflows due to
overruns. Therefore, there should be enough lo-tasks to be
dropped for slot rq.

V. EVALUATION

In this section, we evaluate the performance of the DMC
task model and FIND DROP algorithm compared to the
baseline model that applies as many of the features of the
conventional MCS as possible. Table I briefly shows the
difference between baseline model and proposed method.

TABLE I: Baseline model and proposed method

Baseline Proposed method
Task model MC DMC

Mode switch system-level task-level
Overrun detection when tasks overrun when tasks are released

tasks dropped all lo-tasks selected lo-tasks
scheduling algorithm Pfair Pfair

A. Targeted system

Although the evaluation is performed in a simulation,
our target architecture is Responsive Multithreaded Processor
(RMTP) [17], which is 8-way SMT (simultaneous multithread)
processor for distributed real-time systems. Therefore, we
assume the number of cores m is 7 (kernel occupies 1 core).

B. Task Generation

Task sets are generated with the following configuration.
• Utilization per core Uave: each 5% in [40%, 110%] (with

±1% error)
• Task sets per utilization: 100
• Tasks per task set: 14 (high:7, low: 7)
• Utilization per task: each 5% in [15%, 60%]
Utilization per core Uave is defined as below.

Uave =

∑
τi∈τ Ci(li)/Ti

m
(11)

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 13, Number 1, pages 1–7, January 2024

– 5 –

By nature, task sets that exceed 100% utilization are not ac-
cepted in acceptance tests, but are used to clearly demonstrate
the schedulability of Pfair scheduling.

As described in model section, since lo-tasks have no data-
dependency, the WCET function Ci(n) of lo-tasks returns the
fixed value generated randomly from [1, 30] before system
runs.

Parameters for Data-Dependent Tasks. We offers the
parameters measured in RMTP for data-dependent hi-tasks.
We measured the WCET of qsort benchmark in mibench
[18] while giving each 50 in [50, 1000] as the number of
inputs (Fig.7). Since the computational order of the quick-

0.0e+00

2.0e+06

4.0e+06

6.0e+06

8.0e+06

1.0e+07

1.2e+07

 100 200 300 400 500 600 700 800 900 1000

C
lo

c
k
 c

y
c
le

of input elements

qsort

f(n)

Fig. 7: The execution clock cycles of qsort with the number
of inputs in [50, 1000], running 7 threads in parallel.

sort is generally o(n log n), we defined the function f(n)
as A · n · log n + B, and then we approximates the value
of A and B using least squares method. We further define
Ci(n) below, where TICK = (Clock cycle per system tick)−
(Scheduler overhead per system tick).

Ci(n) ≤
⌈ f(n)

TICK

⌉
(12)

As a result, we get the followig value for each parameter.
• A: 1,144
• B: 330,606
• TICK: 250,000

Note that A and B are the value after adding the positive error
of least squares fitting to make the equation (12) an inequality.

The value Ci(li) for each hi-task is randomly generated
in [5, 30], and then li is calculated using Ci. The number of
inputs n is randomly generated at each release time of hi-
tasks job in [0, 1000] with the normal distribution shown in
Fig.8. The maximum number of inputs in HI mode is hi where
Ci(hi)/Ti = 0.8.

C. Results and Consideration

For notational convenience, we denote the baseline model
as MC and the proposed method as DMC. The duration of
simulation is 5,000 system ticks for each task set.

ä ä E êä F uê

� HÜ� r

Fig. 8: The random value by normal distribution

 0

 20

 40

 60

 80

 100

 40 50 60 70 80 90 100 110

L
o
w

-c
ri
ti
c
a
lit

y
 T

a
s
k
 E

x
e
c
u
ti
o
n
 R

a
te

 (
%

)

Target Utilization per Core (%)

DMC

MC

Fig. 9: Execution rate of lo-tasks

Execution Rate of Lo-tasks. Fig.9 shows the execution rate
of lo-tasks defined as follows.

(# of lo-task jobs finished)
(# of lo-task jobs released)

(13)

The execution rate is decreased by task drops due to hi-task
overruns. In case of DMC model, up to 80% utilization, there
is no drop and the execution rate remains in 100% because
the increased utilzation due to hi-task overruns does not cause
the overflow in system utilization. From 85% utilization, task
drops begin, but the execution rate remains around 90% by
our scheme. In MC model, on the other hand, task drops start
from 40% utilization, and execution rate remains around 60%.
This is because all lo-tasks are dropped every time a hi-task
overruns and the expected utilization UH in HI mode exceeds
the limits of system utilization. Therefore, lo-tasks drop rate
in MC model is not related to the utilization of the task set,
but to the frequency of hi-task overruns.

Scheduling Success Rate. Fig.10 is the result of scheduling
success rate defined as follows.

(# of task sets finished without deadline misses)
(# of task sets: 100)

(14)

Note that the dropped jobs of lo-tasks are not included in
the number of deadline misses. Due to the high schedulability

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 13, Number 1, pages 1–7, January 2024

– 6 –

 0

 20

 40

 60

 80

 100

 40 50 60 70 80 90 100 110

S
c
h
e
d
u
lin

g
 S

u
c
c
e
s
s
 R

a
te

 (
%

)

Target Utilization per Core (%)

DMC

MC

Fig. 10: Scheduling success rate

of Pfair scheduling, DMC model succeeds in scheduling up
to 95% utilization, and rapidly fails when utilization exceeds
100%. The reason why deadline misses occur in task sets with
100% utilization may be due to the existence of task sets with
101% utilization, since 1% of error is allowed in the task set
generation process. In MC model, however, deadline misses
occur from 45% utilization even in Pfair scheduling. This is
because the virtual parameters of subtasks are calculated using
HI-WCET even in LO mode, and the apparent utilization of
hi-tasks is 0.8 even in LO mode. As mentioned earlier, in Pfair
scheudling, a sudden increase in the value of WCET is likely
to cause deadline misses, so the value of WCET should be set
to HI-WCET even if it does not overrun.

In summary, our method performs well both in the execution
rate of lo-tasks and the scheduling success rate. A possible
trade-off is the computational overhead, but the large differ-
ence in results is also due to the lack of sophistication in the
baseline model design.

VI. CONCLUSION AND FUTURE WORK

In conventional mixed criticality systems, excessive task
drops caused by a single overrun of a high-criticality task
reduce the execution rate of low-criticality tasks. We define
a novel DMC task model that focuses on the data dependence
of real-time tasks and propose a scheme reducing task drops by
calculating the required utilization of overrunning tasks. Our
evaluation shows the advantages of our scheme in terms of
execution rate of low-criticality tasks and scheduling success
rate. However, this method relies on the accuracy of the WCET
function, which may cause problems when this method is
applied to actual applications: if the value of the WCET
function is smaller than the actual execution time, unnecessary
task drops will occur. Conversely, if the value of the WCET
function is greater than the actual execution time, deadline
misses due to Pfair scheduling will occur.

As future work, we investigate how to maintain the accuracy
of WCET function, and evaluate our scheme on real hardware.

REFERENCES

[1] P. Prisaznuk, “Integrated modular avionics,” in Proceedings of the IEEE
1992 National Aerospace and Electronics Conference (NAECON) 1992,
1992, pp. 39–45 vol.1.

[2] S. Vestal, “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance,” in 28th IEEE International
Real-Time Systems Symposium (RTSS 2007), 2007, pp. 239–243.

[3] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela,
N. Megow, and L. Stougie, “Scheduling real-time mixed-criticality jobs,”
IEEE Transactions on Computers, vol. 61, no. 8, pp. 1140–1152, 2012.

[4] P. Huang, P. Kumar, N. Stoimenov, and L. Thiele, “Interference con-
straint graph ― a new specification for mixed-criticality systems,” in
2013 IEEE 18th Conference on Emerging Technologies & Factory
Automation (ETFA), 2013, pp. 1–8.

[5] S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-Spaccamela,
S. van der Ster, and L. Stougie, “The preemptive uniprocessor scheduling
of mixed-criticality implicit-deadline sporadic task systems,” in 2012
24th Euromicro Conference on Real-Time Systems, 2012, pp. 145–154.

[6] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, p. 46–61,
jan 1973.

[7] X. Gu and A. Easwaran, “Efficient schedulability test for dynamic-
priority scheduling of mixed-criticality real-time systems,” ACM Trans.
Embed. Comput. Syst., vol. 17, no. 1, nov 2017.

[8] H. Baek and K. Lee, “Contention-free scheduling for mixed-criticality
multiprocessor real-time system,” Symmetry, vol. 12, no. 9, 2020.

[9] N. JUNG, H. BAEK, D. LIM, and J. LEE, “Incorporating zero-laxity
policy into mixed-criticality multiprocessor real-time systems,” IEICE
Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, vol. E101.A, no. 11, pp. 1888–1899, 2018.

[10] X. Gu, A. Easwaran, K.-M. Phan, and I. Shin, “Resource efficient
isolation mechanisms in mixed-criticality scheduling,” in 2015 27th
Euromicro Conference on Real-Time Systems, 2015, pp. 13–24.

[11] J. Lee, H. S. Chwa, L. T. X. Phan, I. Shin, and I. Lee, “Mc-adapt:
Adaptive task dropping in mixed-criticality scheduling,” ACM Trans.
Embed. Comput. Syst., vol. 16, no. 5s, sep 2017.

[12] S. Baruah, “Fairness in periodic real-time scheduling,” in Proceedings
16th IEEE Real-Time Systems Symposium, 1995, pp. 200–209.

[13] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel, “Proportion-
ate progress: A notion of fairness in resource allocation,” in Proceedings
of the Twenty-Fifth Annual ACM Symposium on Theory of Computing,
ser. STOC ’93. New York, NY, USA: Association for Computing
Machinery, 1993, p. 345–354.

[14] S. Baruah, J. Gehrke, and C. Plaxton, “Fast scheduling of periodic tasks
on multiple resources,” in Proceedings of 9th International Parallel
Processing Symposium, 1995, pp. 280–288.

[15] J. Anderson and A. Srinivasan, “Early-release fair scheduling,” in Pro-
ceedings 12th Euromicro Conference on Real-Time Systems. Euromicro
RTS 2000, 2000, pp. 35–43.

[16] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt, “Dp-fair: A
simple model for understanding optimal multiprocessor scheduling,” in
2010 22nd Euromicro Conference on Real-Time Systems, 2010, pp. 3–
13.

[17] S. Nakabeppu, Y. Ide, M. Takahashi, Y. Tsukahara, H. Suzuki,
H. Shishido, and N. Yamasaki, “Space responsive multithreaded proces-
sor (srmtp) for spacecraft control,” in 2020 IEEE Symposium in Low-
Power and High-Speed Chips (COOL CHIPS), 2020, pp. 1–3.

[18] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Proceedings of the Fourth Annual IEEE In-
ternational Workshop on Workload Characterization. WWC-4 (Cat.
No.01EX538), 2001, pp. 3–14.

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 13, Number 1, pages 1–7, January 2024

– 7 –

