
Hybrid Automata Theoretic Specification and
Verification of CPU-DRP Embedded Systems

Ryo Yanase
Kanazawa University,

Japan
Email: ryanase@csl.ec.t.kanazawa-u.ac.jp

Shota Minami
Kanazawa University,

Japan

Satoshi Yamane
Kanazawa University,

Japan
Email: syamane@is.t.kanazawa-u.ac.jp

Abstract—In this paper, we propose formal modeling, specifi-
cation and verification for CPU-DRP systems based on hybrid
automata. First, we specify CPU and environment as real-
time systems, and specify DRP as hybrid systems by using
hybrid automata. Next, we verify various properties by model
checking using HYTECH. We have realized verification of parallel
composition of CPU, DRP and environment.

I. INTRODUCTION

Embedded systems recently begin to have various functions,
but increasing the number of processors causes troubles for
miniaturization and saving energy. Therefore, recently, a Dy-
namically Reconfigurable Processor(DRP) is paid to attention
[1]. In DRP, a plural number of exclusive processings is
executed in the same board by dynamically changing the
circuit configuration [1], [2]. DRP is used as an accelerator
of CPU, and some DRP is loosely connected with the CPU
[1]. In this paper, DRP is loosely connected with the CPU.
We model the embedded system which integrates CPU and
DRP cooperatively. Also, we specify the embedded system
using hybrid automata, and verify properties by using model
checker HYTECH [3].

In dynamically reconfigurable embedded systems, the dead-
line is available in the processing task on CPU, and CPU
behaves as a real-time system. In addition, the deadline is
available in the co-task on DRP. The number of executing co-
tasks on DRP changes dynamically by the task creation and
disappearance. Also, the operating frequency of DRP changes
dynamically. Therefore, we specify the operation of dynamical
reconfiguration using the hybrid automaton with the states of
generation and disappearance as a static system. By the above
feature, we must verify various properties with real-time and
hybrid feature.

In this paper, we model the embedded system, in which
CPU and DRP cooperatively behave, and then we specify the
embedded system by hybrid automata. Also, we verify various
properties by using model checker HYTECH [3] as follows:

1) First of all, the model is respectively divided into three
parts such as external environment, CPU and DRP.

2) Next, a detailed internal structure of an individual model
is specified using hybrid automata. Also, dynamic be-
haviors of generation and disappearance of the task is
specified as a static system by the states of generation
and disappearance.

3) Finally, model checker HYTECH [3] inputs both hybrid
automata, and verifies whether hybrid automata satisfy
hybrid, real-time and reactive properties or not.

A. Related Works

a) Specification language: A specification language of
dynamic reconfigurable system is either reactive model, real-
time model or hybrid model. Also, the style is either process
algebra, automaton or Petri Net. A. Deshpande has developed
SHIFT [4], and F. Kratz has developed R-Charon [5] based
on hybrid automaton. SHIFT [4] and R-Charon [5] have
specification power for dynamically changing the structure
of the network. However, as they can not describe event
trigger behaviors, then they can not describe a dynamically
reconfigurable processor. Also, the Φ-calculus is a process
algebra based on hybrid reconfigurable modeling language
[6]. But the Φ-calculus considers continuous behavior to be
a property of an explicit environment instead of being part of
other embedded systems as we do. On the other hand, thought
J. Teich [7] and K.Onogi [8] have studied modeling method of
DRP related to this paper based on discrete event system, their
method can not specify DRP, in which the operating frequency
of DRP changes dynamically.

b) Verification: Wang Yi and co-workers have proposed
the general schedulability checking problem for real-time tasks
is a reachability problem for a decidable class of timed
automata extended with subtraction [15]. Also, Cimatti and
Palopoli have modeled real-time tasks by parametric timed
automata [16]. Wang Yi’s and Cimatti’s work mean real-time
properties such as schedulability can be verified by timed
automata. In this paper, as we verify both real-time and hybrid
properties, we specify DRP using hybrid automata.

c) Architecture: Pellizzoni and Caccamo have developed
reconfigurable architecture composed of CPU and reconfig-
urable area (FPGA) with periodic tasks [17]. Also, H. Nakano
and T. Shindo have developed dynamically reconfigurable
processor LSI [2]. In this paper, our model is reconfigurable
architecture composed of CPU and dynamically reconfigurable
processor LSI(DRP). We have already specified reconfigurable
system composed of CPU and DRP using hybrid automata.
Moreover we have verified schedulability of specification
using HYTECH [18].
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In this paper, we improve specification and verify safety and
liveness with hybrid, real-time and reactive feature.

II. MODEL OF CPU, DRP AND ENVIRONMENT

We model the embedded system that combines CPU, DRP
and environment as shown in Fig.1. The embedded system
advances processing by cooperated operations of CPU and
DRP. Tasks on CPU are dynamically generated by an external
environment. Tasks are executed under the management of
CPU-Dispatcher. The task that can be executed at the same
time on CPU is one. When it is necessary to process two or
more tasks, the allocation of CPU is changed according to
priority (preemption). When there is a description to use DRP
in a task, CPU-Dispatcher outputs the generation demand of
co-task of DRP to DRP-Dispatcher. At this time, initial values
such as a necessary substrate area and operating frequency
in co-task information are inputted into Co-task. We explain
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Fig. 1. Overview of dynamic reconfigurable processor

co-tasks on DRP as follows:
1) As shown in the upper part of Fig.2, two or more co-

tasks are executable at the same time on DRP. It is
arranged on the substrate as long as there is becoming
empty in the tile in order of arrival. However, when you
execute co-task a and b at the same time, it operates
by the slowest value fb in the operating frequency of
co-tasks under execution as shown lower in Fig.2.

2) When the processing of a co-task is completed on
DRP, the co-task is disappeared. DRP-Dispatcher in-
forms the completion of processing to CPU-Dispatcher.
Afterwards, CPU-Dispatcher restarts the processing of
the task, which calls the co-task. If all the processings
of the task are completed, the task is disappeared. Even
when you process the same co-task, the arrangement of
the tile might be different. In this case, the processing
time of the co-task is assumed not to change. The
embedded system that combines CPU and DRP repeats
such operations.

Fig. 2. Behavior of dynamic reconfigurable processor

We specify dynamic generation and disappearance by a static
system. The number of tasks and co-tasks must be fixed at
specification time. So, as we can specify a dynamically re-
configurable system by a static system, we can verify whether
the system is schedulable or not using HYTECH. According to
dynamic generation and disappearance, task and co-task repeat
the following behaviors.

1) Before generation of a task (or co-task), the task (or
co-task) exists in a ”NONE state”.

2) At once when the task (or co-task) is generated, the task
(or co-task) goes into a ”READY state”.

3) Afterwards, at once when the task (or co-task) is exe-
cuted, the task (or co-task) goes into a ”EXEC state”.

4) Finally, at once when the task (or co-task) is finished,
the task (or co-task) goes into a ”NONE state”.

Also, the communications between external environment,
CPU-Dispatcher, task, DRP-Dispatcher and co-task in Fig.1
are expressed by parallel compositions of hybrid automata.

In general, the operating frequency of CPU uses many
hundreds of MHz level, and the operating frequency of DRP
is tens of MHz ∼ hundreds of MHz. Each input of systems
is done by the task designer and LSI designer as shown in
Fig.1. A dynamic switch of a configuration can change the
configuration with one clock.

III. SPECIFICATION LANGUAGE OF DRP, CPU AND
ENVIRONMENT

We define syntax and semantics of a linear hybrid au-
tomaton [3] of specification language of DRP, CPU and
environment as follows. We extend a linear hybrid automaton
[3] with discrete variables.

A. Syntax of a linear hybrid automaton

First, the syntax of a linear hybrid automaton is formally
defined.
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Definition 1: Syntax of a linear hybrid automaton
An invariable condition and a guard condition are defined as
follows:

φ ::= true | asap | γ1 ∼ γ2 | φ1 ∧ φ2

, where
γ ::= x | d | c | γ1 + γ2 | γ1 − γ2

∼∈ {<,>,==,≤,≥}, x ∈ X is a real-valued variable, d ∈ D
is a discrete variable, c is real number. asap is included only
in the guard condition. The transition relation to which asap
attaches gives priority more than a timed transition in HYTECH

[3]. Let B(X) be the set of invariable conditions and guard
conditions.

A flow, which assigns a flow condition to each location, is
the following predicate:

α ::= ẋ = c
The dotted variable ẋ ∈ Ẋ refers to the first derivative of

x with respect to time, i.e., dx/dt. Let F (X) be the set of
flow conditions. Also, arithmetic expression over a finite set
V (= X ∪D) is defined as follows:

upd ::= v := const | v := v + const
, where const is real number, integer,character string. Let
UPD(V ) be the set of arithmetic expressions.

A linear hybrid automaton LHA is LHA =
(X,D,L, inv, init, f low,E,Act) that consists of the
following components:

• A finite set X of real-valued variables.
• A finite set D of discrete variables.
• A finite set L of locations.
• A function inv that assigns an invariant condition φ ∈

B(X) to each location l ∈ L.
• An initial condition init consists of the set of initial

locations and arithmetic expressions.
• A function flow that assigns a flow condition α ∈ F (X)

to each location l ∈ L.
• A finite set Act of actions, where Act = Actin∪Actout∪

{τ}. Here Actin is a finite set of input actions, Actout is
a finite set of output actions, τ is an internal action.

• E ⊆ L × Act × B(X) × 2UPD(V ) × L is a finite set
called the transition relation. An element of E is a tuple
of the form 〈l, action, φ, UPD(V ), l′〉, where action is
either a!, a?, τ , and UPD(X) is a finite set of arithmetic
expressions, and φ is a guard condition.

Here a linear hybrid automaton LHA is a stopwatch automa-
ton if a flow condition α is defined as follows:

α ::= ẋ = 0 | ẋ = 1

B. Semantics of a linear hybrid automaton

First, we define a state of a linear hybrid automaton.
Definition 2: State of a linear hybrid automaton

A state of a linear hybrid automaton is a pair (l, µ, ν) consist-
ing of a location l ∈ L, ν : X → R, µ : D → Z∪STRING,
where Z is integer, STRING is a set of character strings.

Transitions of a linear hybrid automaton consist of a timed
transition and two discrete transitions.

Next, we define a timed transition of a linear hybrid
automaton.

Definition 3: Timed transition
(l, µ, ν)

δ→ (l, µ, ν′)
Here a curve of flow is a differentiable function f : [0, δ] →
Rn, where |X| = n, f(0) = ν, f(δ) = ν′.

Next, discrete transitions consist of an internal transition and
a synchronization transition.

Definition 4: An internal transition

(l, µ, ν)
τ,guard,UPD(V )−−−−−−−−−−→ (l′, µ′, ν′)

φ is assigned to guard, variables are updated by UPD(V ).
Also, if φ = asap, then the discrete transition is immediately
done.

Definition 5: Synchronization transition
When automaton 1, automaton 2, and automaton 3 change
synchronously by action a? and a!, the behaviors are formally
defined as follows:

(l1, µ1, ν1)
a!,guard1,UPD(V1)−−−−−−−−−−−−→ (l′1, µ

′
1, ν

′
1),

(l2, µ2, ν2)
a?,guard2,UPD(V2)−−−−−−−−−−−−→ (l′2, µ

′
2, ν

′
2),

(l3, µ3, ν3)
a?,guard3,UPD(V3)−−−−−−−−−−−−→ (l′3, µ

′
3, ν

′
3)

Automaton 1 outputs a!, then both automaton 2 and au-
tomaton 3 input a?.

Finally, we define a run of a linear hybrid automaton.
Definition 6: A run of a linear hybrid automaton

(l0, µ0, ν0)
δ1→ (l0, µ0, ν1)

e1→ (l1, µ1, ν2) · · ·
, where l0 is an initial location, both ν0 and µ0 are valuations
given by an initial condition, e1 ∈ E is a transition relation.

C. Parallel composition

The communications between external environment, CPU-
Dispatcher, task, DRP-Dispatcher and co-task in Fig.1 are
expressed by parallel compositions of hybrid automata. For
given LHAi = (Xi, Di, Li, invi, initi, f lowi, Ei, Acti) (i =
1, . . . , n), the parallel composition LHA1 × · · · × LHAn is
LHA = (X,D,L, inv, init, f low,E,Act) consisting of the
following components:

• A finite set X = X1 ∪ · · · ∪Xn of variables.
• A finite set D = D1 ∪ · · · ∪Dn of discrete variables.
• A finite set L = L1 × · · · × Ln of locations.
• A function that assigns an invariant condition φ ∈ B(X)

to each location l ∈ L, where φ = φ1 ∧ · · · ∧ φn, φ1 ∈
B(X1),. . . ,φn ∈ B(Xn).

• An initial condition is init = (init1, . . . , initn).
• A function that assigns a flow condition α ∈ F (X) to

each location l ∈ L, where α = α1 ∧ · · · ∧ αn.
• A finite set Act = {τ} of actions. The input action

synchronizes with the output action and it becomes an
internal action τ .

• E ⊆ L × Act × B(X) × 2UPD(V ) × L is a finite set
called the transition relation. An element of E is a tuple
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of the form 〈l, τ, φ, UPD(V ), l′〉, where an element of E
is a tuple of the form 〈l, τ, φ, UPD(V ), l′〉, where l, l′ ∈
L, τ ∈ Act, φ = φ1 ∧ · · · ∧φn, UPD(V ) = UPD(V1)∪
· · · ∪ UPD(Vn).

IV. CONFIGURATION OF CPU, DRP AND ENVIRONMENT

We show configuration of CPU, DRP and environment
based on hybrid automata in Fig.3.

Fig. 3. Configuration of CPU, DRP and environment

1) Ext is an automaton which expresses the environment.
Ext sends a start demand on Task.

2) Task is an automaton that changes to a ready state
from a none state when an activation demand is received
from Ext, and a dispatch demand is sent to Task
Dispatcher. It changes to an executing state when
selected by Task Dispatcher as an execution task. An
executing task might send processing activities to a Co-
task. In this case, the task changes to a waiting state,
the dispatch demand is sent to the Task Dispatcher
and the processing demand of the Co-task is sent to
the Co-task. It changes to a waiting state when the end
response of the processing Co-task is returned. When
the executing task ends processing, the dispatch demand
is sent to Task Dispatcher.

3) Task Dispatcher is an automaton for dispatching tasks.
When the dispatch demand is received from a task, the
task with the highest priority changes to executing state,
and other tasks change to waiting states. There is also a
dispatch demand from Task.

4) DRP Dispatcher is an automaton for dispatching Co-
task in DRP. When DRP Dispatcher receives dispatch
demand from Co-Task, it sends execution demand to
Co-task with the highest priority. if there are tiles for
executing a Co-task of a head of waiting queue.

5) Co-Task is an automaton of co-tasks executing on DRP.
It changes to a ready state when a start demand of Co-
task is received from task. It changes to the executing

state when the execution demand is received from DRP
Dispatcher, and the processing of Co-task begins.
The processing end response is returned to task when
processing ends.

6) DRP Frequency is an automaton that manages the fre-
quency of DRP. When a Co-task is executed with slow
operating frequency, the inclination of the execution time
of Co-task under execution is changed.

V. SPECIFICATION OF CPU, DRP AND ENVIRONMENT BY
HYBRID AUTOMATA

This section explains a part of specifications by a linear
hybrid automata that are described in the previous section. In
this paper, we assume that task consists of two tasks such as
task A and task B.

A. Ext(external environment):

An external environment automaton that corresponds to Ext
in Fig.3 consists of both A E TaskA that periodically calls
task A and A E TaskB that periodically calls task B as
shown in Fig.4. The variable ”global” represents the clock
variable, ”Stop” is the time when the verification stops, ”x A”
and ”x B” are the clock variables of each task, and ”T A”
and ”T B” are periodic times.

Fig. 4. Ext(environment): A E TaskA and A E TaskB

B. Task A:

Fig.5 corresponding to Task in Fig.3 is an automaton
A TaskA of task A. Here, e A is the execution time, and
TaskA flag denotes a ready state or an executing state,
and r A denotes the elapsed time from release. log A is a
history of the execution location, E1 A and E2 A are the
CPU processing times required by each execution location.
The rough behaviors are as follows:

1) When the action Act Create A? of the generation
request of task A is input from external A E TaskA,
A TaskA sets the TaskA flag and resets r A. Then
the discrete transition from L None A to L Ready A
occurs. This is the dynamic generation, which is speci-
fied by a static system.

2) When the action Act Exec A? of the execution request
of task A is input from A TD, according to guard
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condition log A == Ready A, the discrete transition
from L Ready A to L Exec1 A occurs.

3) In location L Exec1 A, the following two behaviors
can be done:

• When the action Act Exec A? is input, the discrete
transition from L Exec1 A to L Exec1 A occurs.

• When e A reaches E1 A by flow condition e A =
1, invariable condition e A ≤ E1 A and guard
condition e A == E1 A, the discrete transition
from L Exec1 A to L Wait A occurs. At this
time, processing demand action Act Ready a0! to
co-task a is output to A DRP Dispatcher.

4) When action Act F inish a0? is input from
A Co Task a0 in location L Wait A, the discrete
transition from location L Wait A to L Ready A
occurs. Also, when action Act F inish b0? is input
from A Co Task a0 in location L Wait A, the
discrete transition from location L Wait A to
L Fin A occurs.

C. Task B:

Fig.6 corresponding to Task in Fig.4 is an automaton
A TaskB of task B. Here, e B is the execution time, and
TaskB flag denotes a ready state or an executing state,
and r B denotes the elapsed time from release. log B is a
history of the execution location, E1 B and E2 B are the
CPU processing times required by each execution location.
The rough behaviors are as follows:

1) In location L Ready B, the following behaviors can be
done:

• When action Act TD Ready B? is input from
A TD, the discrete transition from L Ready B to
L Ready B occurs.

• When action Act Exec B? is input from A TD
according to guard condition log B == Ready B,
the discrete transition from L Ready B to
L Pre Exec B occurs.

• When action Act Exec B? is input from A TD
according to guard condition log B == Exec B
or log B == Exec a B, the discrete transition
from L Ready B to L Exec B occurs.

2) In location L Pre Exec B, the following two behav-
iors can be done:

• When action Act TD Ready B? is input, the
discrete transition from L Pre Exec B to
L Ready B occurs.

• When action Act Ready a1! outputs to
A Co Task a1 by wait count, the discrete
transition from L Pre Exec B to L Wait B
occurs.

D. Task Dispatcher:

Fig.7 that corresponds to Task Dispatcher in Fig.3 is
an automaton A TD of Task Dispatcher. Here, variables

TaskA flag and TaskB flag show whether each task ex-
ecutes, waits or runs. execref shows the currently executing
task. As flow conditions in all the locations does not exist, the
flow condition in the location is not described in this Fig.7.

1) A TD behaves from an initial location L Idle TD.
the action Act Create A?, Act Create B?,
Act Ready a0?, Act Ready a1?, Act Ready b0?,
Act F inish A?, Act F inish B?, Act F inish a0?,
Act F inish a1?, or Act F inish b0? is input. Then
the discrete transition from L Idle TD to L Pri3
occurs.

2) In location L Pri3, the following three behaviors can
be done:

• execref is set to TaskA according to guard condi-
tion asap∧TaskA flag == 1∧TaskB flag ==
0. Then Act Exec A! is output to A TaskA, and
the discrete transition from L Pri3 to L Idle TD
occurs.

• execref is set to TaskA according to guard condi-
tion asap∧TaskA flag == 1∧TaskB flag ==
1, and action Act Exec A! is output to A TaskA.
Then the discrete transition from L Pri3 to
L Pri2 occurs.

• execref is set to TaskB according to guard condi-
tion asap∧TaskA flag == 0∧TaskB flag ==
1, and the discrete transition from L Pri3 to
L Pri2 occurs.

3) In location L Pri2, the following two behaviors can be
done:

• Action Act TD Ready B! is output to
A TaskB according to guard condition
asap ∧ TaskA flag == 1, and the discrete
transition from L Pri2 to L Idle TD occurs.

• Action Act Exec B! is output to A TaskB ac-
cording to guard condition asap∧TaskA flag ==
0, and the discrete transition from L Pri2 to
L Idle TD occurs.

Fig. 7. Task Dispatcher: A TD
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Fig. 5. Task A: A TaskA

Fig. 6. Task B: A TaskB

E. DRP Dispatcher

Fig.8 corresponding to DRP Dispatcher in Fig.3 is an
automaton A DRP Dispatcher. Here a variable wait top
denotes the top number of the waiting que, a variable tile
denotes the number of the space tiles of DRP, variables Tile a
and Tile b show the number of the tiles which are necessary
for handling each Co-task. As flow conditions does not exist
here, the flow condition in locations is not described in the
Fig.8.

1) A DRP Dispatcher starts from an initial location
L Idle DD. When either action Act Ready a0?,
Act Ready a1?, or Act Ready b0? is input,
the discrete transition from L Idle DD to
L Mapping occurs. When action Act F inish a0? or
Act F inish a1? or Act F inish b0? is input from
each Co-Task, the discrete transition from L Idle DD
to L Mapping occurs.

2) In location L Mapping, the following behaviors can be

done:
• According to guard condition asap∧wait top ==

0 ∧ wait0 == a0 ∧ tile ≥ Tile a, wait top is
increased by 1, and tile is decreased by Tile a,
running demand action Act Exec a0! is output to
A Co Task a0, and the discrete transition from
L Mapping to L Idle DD occurs.

• When a tile of DRP does not have a space, ac-
cording to guard condition asap ∧ wait top ==
0 ∧ wait0 == a0 ∧ tile < Tile a, the discrete
transition from L Mapping to L Idle DD occurs.

• When a waiting queue does not have a Co-task,
by guard condition asap, action Act None! is
output all Co-tasks, and the discrete transition from
L Mapping to L Idle DD occurs.

F. Co-Task

Fig.9 corresponding to Co-Task in Fig.3 is an automaton
A Co Task a0. Here a variable r a0 is a elapsed time from
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Fig. 8. DRP Dispatcher: A DRP Dispatcher

Fig. 9. Co-Task: A Co Task a0

start, and e a0 is a execution time, and E a is a computation
time of Co-Task a.

1) A Co Task a0 starts from an initial location
L None a0. If the action Act Ready a0? is input
from A DRP Dispatcher, the discrete transition to
L Ready a0 occurs after r a0 is reset. An initial
location L None a0 means A Co Task a0 does
not exist, and means A Co Task a0 is dynamically
generated by the action Act Ready a0?. This is the
dynamic generation, which is specified by a static
system.

2) If the action Act Exec a0? is input from
A DRP Dispatcher in the location L Ready a0,
the discrete transition to L Exec a0 occurs after e a0
is reset.

3) When the discrete transition from L Exec a0 to
L None a0 occurs, the tile of DRP is released by
(tile := tile+Tile a), and the action Act F inish a0!
is outputted to A TaskA and A DRP Dispatcher.
The discrete transition from L Exec a0 to L None a0
means A Co Task a0 is dynamically disappeared by
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Act F inish a0!. This is the dynamic disappearance,
which is specified by a static system.

In the case of A Co Task a1 and A Co Task b0,
the same transitions occur, too. We do not describe
A Co Task a1 and A Co Task b0 for the convenience of
space.

G. DRP Frequency

L Freq Idle
true

˙e a0 = 0 ˙e a1 = 0
˙e b0 = 0

L Freq b
true

˙e a0 = 1/2
˙e a1 = 1/2
˙e b0 = 1

Act Exec b0?, true, {}

Act F inish b0?, ˙r a0 == 0 ∧ ˙r a1 == 0, {}

L Freq a
true
˙e a0 = 1
˙e a1 = 1
˙e b0 = 1

Act Exec a0?, true, {}
Act Exec a1?, true, {}

Act F inish a0?, ˙r a1 == 0, {}
Act F inish a1?, ˙r a0 == 0, {}

Act Exec b0?, true, {}

Act F inish b0?, ˙r a0 == 1, {}
Act F inish b0?, ˙r a1 == 1, {}

Act Exec a0?, true, {}
Act Exec a1?, true, {}

Act F inish a0?, ˙r a1 == 1, {}
Act F inish a1?, ˙r a0 == 1, {}

Fig. 10. DRP Frequency: A DRP Frequency

Fig.10 corresponding to DRP Frequency in Fig.3 is an
automaton A DRP Frequency.

1) A DRP Frequency starts from the initial location
L Freq Idle.

2) If the co-task b0 is executed, A DRP Frequency stays
in the location L Freq b and the operating frequency
is fixed the Co-task b0’s one.

3) If the co-task a0 or a1 is executed and the Co-task
b0 is not executed, A DRP Frequency stays in the
location L Freq a and the operating frequency is fixed
the operating frequency of the Co-task a0 and a1.

4) Otherwise A DRP Frequency stays in the location
L Freq Idle.

VI. VERIFYING PROPERTIES OF THE SYSTEM BY USING
HYTECH

A. Verification Properties

1) Overview: Dynamically reconfigurable systems have the
following three significant features that are called hybrid, real-
time and reactive feature [19].

• Hybrid feature——Systems behave as a hybrid system
with dynamically changing the operating frequency of
DRP

• Real-time feature——Systems behave as a real-time sys-
tem with the deadline in the processing task

• Reactive feature——Systems behave as a reactive system
with responding to the input from the environment.

For our specification, we must verify safety and liveness [20]
with the above features. Therefore, we classify the verification
properties into six categories shown in TABLE I.

a) Properties with hybrid feature: In this paragraph, we
explain liveness and safety conditions with hybrid feature.

Liveness with hybrid feature is a ”Idling frequency” condi-
tion for the operating frequency of DRP. All executing co-tasks
finish and the operating frequency of DRP becomes the idling
frequency in the future. As well as liveness, safety with hybrid
feature is a ”Minimum frequency” condition for the operating
frequency of DRP. The operating frequency of DRP is always
be fixed on a minimum frequency of running co-tasks.

b) Properties with real-time feature: Next, we explain
liveness and safety conditions with real-time feature.

Liveness with real-time feature is a ”Dispatching co-tasks”
condition for dispatching Co-tasks. If the co-task is called by
a task then it is started executing within the maximum waiting
time, where the maximum waiting time is the difference
between the deadline and the CPU processing time.

Safety with real-time feature is a ”CPU schedulability” con-
dition for schedulability of tasks. The remaining time needed
to finish processing the task is always less than remaining time
until the deadline.

c) Properties with reactive feature: Finally, we explain
liveness and safety conditions with reactive feature.

Liveness with reactive feature is a ”Destroying co-tasks”
condition for destroying Co-tasks. If the co-task is dispatched
by the DRP dispatcher then it is destroyed in the future.

Safety with reactive feature is a ”Tile control” condition
for resource management (i.e., management of tiles). In this
paper, maximum number of tiles is 8. Therefore, number of
usage tiles always ranges from 0 to 8.

TABLE I
CLASSIFICATION OF PROPERTIES FOR DYNAMICALLY RECONFIGURABLE

SYSTEMS

Hybrid feature Real-time feature Reactive feature

Liveness Idling frequency Dispatching co-tasks Destroying Co-tasks

Safety Minimum frequency CPU schedulability Tile control

2) Monitor for verifying various properties: In this section,
we show monitor automata [12] used to verify properties. The
monitor contains special states which are only reachable by
violating executions. Besides, the monitor must act strictly
as an observer of the original system, without changing its
behavior. Reachability analysis is performed on the parallel
composition of the system(CPU, DRP and environment) and
the monitor. The system correct iff no violating state in the
monitor is reached [13]. As the flow condition of the variable
that takes the real number value is constant here, the flow
condition in each location is omitted in Fig.11–16.

a) Monitor for liveness with hybrid feature: Using the
monitor automaton MHL shown in Fig.11, we verify liveness
with hybrid feature. MHL checks whether the automaton
A DRP frequency starts from location L Freq Idle and
reaches this location again.
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b) Monitor for safety with hybrid feature: Using the
monitor automaton MHS shown in Fig.12, we verify safety
with hybrid feature. In this paper, we assume that the operating
frequency of co-task b is less than the operating frequency
of Co-task a. So, MHS checks whether the flow conditions
satisfy ˙e a = 1/2, ˙e a1 = 1/2 and ˙e b0 = 1 while the co-
task b0 is executing.

L HL Run1

global == 0

L HL Run2

global ≥ 0

, ˙e a0 == 0 ∧ ˙e a1 == 0∧
˙e b0 == 0, {}

L HL Accept

true

, ˙e a0 == 0 ∧ ˙e a1 == 0∧
˙e b0 == 0 ∧ global > 0, {}

Fig. 11. Monitor MHL

L HS Run
true

L HS Error
true

, ˙r b0 == 1∧
˙e a0 == 1 ∧ ˙e a1 == 1 ∧ ˙e b0 == 1, {}

, ˙r b0 == 1∧
˙e a0 == 0 ∧ ˙e a1 == 0 ∧ ˙e b0 == 0, {}

Fig. 12. Monitor MHS

c) Monitor for liveness with real-time feature: Using
the monitor automaton MRTL a0 shown in Fig.13, we verify
liveness with real-time feature for co-task a0. MRTL a0 checks
whether r a0 does not exceed D A−E2 A until the action
Act Exec a0? is input when the action Act Ready a0? is
input, where r a0 is a elapsed time from start of co-task
a0, D A is the deadline of task A and E2 A is the CPU
processing time of task A. Monitor automata can be composed
with co-tasks a1 and b0.

d) Monitor for safety with real-time feature: Using the
monitor automaton MRTS shown in Fig.14, we verify safety
with real-time feature. MRTS checks whether each remaining
time E2 A − e A,E2 B − e B for processing task exceed
remaining time D A− r A,D B − r B until deadline.

e) Monitor for liveness with reactive feature: Using
the monitor automaton MRL a0 shown in Fig.15, we verify
liveness with reactive feature for co-task a0. MRL a0 checks
whether the action Act F inish a0? is input when the action
Act Ready a0? is input. Monitor automata can be composed
with co-tasks a1 and b0.

f) Monitor for safety with reactive feature: Using the
monitor automaton MRS shown in Fig.16, we verify safety
with reactive feature. MRS checks whether the number of
usage tiles tile satisfies tile < 0 or tile > 8.

L RTL a0 Run1
true

L RTL a0 Run2
true

Act Ready a0?, true, {}

Act Exec a0?, r a0 ≤ D A− E2 A, {}

L RTL a0 Error
true

, r a0 > D A− E2 A, {}

Fig. 13. Monitor MRTL a0

L RTS Run
true

L RTS Error
true

,E2 A− e A > D A− r A, {}

, E2 B − e B > D B − r B, {}

Fig. 14. Monitor MRTS

B. Practical verification experiment

Using above monitor automata, we verify six properties for
the dynamically reconfigurable system specified in section IV
by HYTECH. In this paper, we show only result of verifying
safety with real-time due to limitations of space.

First of all, the contents of the processings of tasks are
assumed to be TABLE II, and the parameters of co-tasks are
assumed to be TABLE III.

We verify safety with real-time in the case of TABLE II–III.
A period of task A is T A, and a period of task B is T B,
where T A = 70 and T B = 200 are shown in Fig.4. Pro-

L RL a0 Run1
true

L RL a0 Run2
true

Act Ready a0?, asap, {}

Act F inish a0?, asap, {}

L RL a0 Error
true

Act Ready a0?, asap, {}

Fig. 15. Monitor MRL a0

L RS Run
true

L RS Error
true

, tile < 0, {}

, tile > 8, {}

Fig. 16. Monitor MRS
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TABLE II
TASK PARAMETER(211MB, 7.1 SECONDS)

Task Period Deadline Priority Processing procedure
A 70 70 high 20,Co Task a,10,Co Task b
B 200 200 low Co Task a,110

cessing procedure ”20, Co Task a,10, Co Task b” means
that ”co-task a is called after CPU advances processing for 20,
and co-task b is called after CPU advances processing for 10
afterwards”. Also, E1 A and E2 A in Fig.5 are E1 A = 20
and E2 A = 10. Moreover, ”Co Task a,110” means that
E1 B and E2 B in Fig.6 are E1 B = 110 and E2 B = 110.
As computation time of Co-Task a is 10 in TABLE III，E a

TABLE III
CO-TASK INFORMATION

Co-Task Computation time Deadline Tiles Ratio of Frequency
Co-Task a 10 15 2 1
Co-Task b 5 10 6 1/2

in Fig.9 is E a = 10．By verification, it is not possible
to schedule the system because the remainder time until the
deadline became 29 at time 171 though the time of 30 is
needed for CPU processing of task B. In this case, required
memory and computation time are 211MB and 7.1 seconds.
After the specification is corrected referring to the output error,

TABLE IV
CORRECTED TASK PARAMETER(581MB, 15.8 SECONDS)

Task Period Deadline Priority Processing procedure
A 70 70 high 20,Co Task a,10,Co Task b
B 200 200 low Co Task a,97

it is verified again. Corrected task parameter is in TABLE IV.
It is possible to schedule the system as a result of correcting
the processing time of task B from 110 to 97. In this case,
required memory and computation time were 581MB and 15.8
seconds.

VII. CONCLUSION

We model and specify the embedded system such that CPU
and DRP cooperatively behave. We specify six verification
properties such as safety and liveness with hybrid, real-time
and reactive features. Also we verify whether the system
is satisfiable or not by parallel composing CPU, DRP and
environment. Especially we specify a dynamic reconfigurable
processor by a static model. Therefore, we show our proposed
model can be verified using an existing model verifier HYTECH

[3] by a practicable verification cost. In this points, there are
novelty and effectiveness that do not exist in other previous
research. In this paper, assuming that co-tasks of DRP are
already generated, we model, specify and verify the system.
But in fact, co-tasks on DRP are generated and disappeared.
For this, during modeling, and specification and verification
stages, the state space explosion problems may occur.

In order to avoid the state space explosion problems, we
have already developed dynamic hybrid automaton and its

dynamic hybrid CEGAR(CounterExample-Guided Abstraction
Refinement) [14]. Dynamic hybrid automaton can express
the dynamic generation and disappearance of co-tasks. Also,
dynamic hybrid CEGAR can avoid the state space explosion
problems of formal verifications. We are now implementing
dynamic hybrid CEGAR verifier.
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