
A Multi-factor Approach for Stock Price Prediction
by using Recurrent Neural Networks

Xu Zhang, Chen Li, Yasuhiko Morimoto
Department of Information Engineering

Hiroshima University
1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan

Abstract— Stock price prediction is a difficult type of time
series predictive modeling problem. In time series forecasting,
Autoregressive Integrated Moving Average(ARIMA) is one of
the famous linear models. However real-world time series like
the stock is rarely pure linearity. The conventional ARIMA
method cannot model the non-linear function very well. Since
the stock price forecast depends on many factors, generating a
good prediction model is a huge challenge for the researchers.
In recent years, Recurrent Neural network (RNN) has yielded
immense success on time-series prediction which can learn
arbitrary linear and non-linear function from the dataset. Long
Short-Term Memory network (LSTM) is one of RNN which is
usually used for solving gradient vanishing problem. In this
paper, we propose an LSTM approach to predict stock price.
Moreover, for better improving the accuracy of our model,
we consider multi-factor which are relevant to stock price.
In the experiments, we firstly compare our model with the
conventional ARIMA method. Besides, we also demonstrate the
performance of single-factor with the multi-factor model and
different time periods.

Keywords: Stock Price, Recurrent Neural Network, ARIMA.

I. INTRODUCTION

In the real world, a lot of tasks belong to time series fore-
casting tasks such as forecasting stock price, forecasting ex-
change rate, and forecasting weather. In general, researchers
firstly analyze the past observations and get a model which
could represent the relationship of time series. Finally, using
this model for forecasting future data.

Stock price belongs to financial forecasting. In fact, there
are lots of people care about of it since it related to our
life. So in the past years, so many people are working on
financial forecasting task. If the model is well, people can
get a high profit. But forecasting tasks are not very easy
because in real world there are linear features and nonlinear
features influence on it. And in the real dataset, maybe it is
not complete, or it has some unreal data [13].

Before neural network, there is forecasting method called
Autoregressive Integrated Moving Average (ARIMA) [2] is
very popular. The reason of why it can be wildly used is that
it could capture the linear relationship in the dataset. In fact,
ARIMA model involved three different types of model [11].
The first one is the Autoregressive model (AR), the second
one is called Moving Average (MA) model, the last one is
ARMA model which is combined with former two models.
But the performance of ARIMA model for real-world time
series is not very well. Because this model only could capture

linear relationship. This is its major limitation. For our stock
dataset, there are a lot of factors influence stock price. The
single linear function cannot capture complex relationship.
So using ARIMA model could solve some simple forecasting
task which time series only include linear function.

To solve the limitation of ARIMA model, Artificial Neural
Networks (ANNs) appear [18]. In the past ten years, re-
searchers changed different types of ANN for time series
forecasting. The major advantage of ANNs is that it could
capture linear features and nonlinear features. So the per-
formance of ANN for real-world forecasting is much better
than ARIMA model. Another advantage of ANN is that it
does not pre-assign function. ANN model is auto-suitable
based on the features provided in the dataset. Using ANN
could forecast only future short-term data. This is its major
limitation. It cannot memory long-term information of lots
of inputs. For our sequential information, ANN cannot make
use of it.

Recurrent Neural Networks (RNNs) is different with
ANNs. The structure of RNNs are more complex than ANNs.
The improvement of RNNs is that it can memory long-term
information. So it can process sequential data. Rnns is very
suitable for time series forecasting tasks. The improvement
of RNNs is that in hidden layer there has a hidden state,
and using hidden state could memory former information.
The advantage of conventional RNNs is that it can lead
to gradient descent and gradient explode [10]. In other
word, conventional RNNs cannot memory very long time
information. Long Short-Term Memory (LSTM) [8] and the
Gated Recurrent Unit(GRU) [3], are designed to catch more
long-term memory so that it can be long-term memory inputs
more easily. The different of LSTM and GRU is that the
structure of GRU is simple than LSTM.

In this paper, for handling the sequential prediction task in
the financial market field, we will use LSTM for stock price
prediction. Firstly, we only use one single time series (high
price) for training our model. Comparing its performance
with traditional ARIMA model. For better improving our
model, additional six factors (open price, close price, low
price, volume, money, and change) are considered. Retrain-
ing the neural network and compared with a single factor
model. Finally, we test prediction capacity of Recurrent
Neural Networks with stock price dataset in weekly step,
half monthly step, monthly step and 100 days step.

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 8, Number 1, pages 9–13, January 2019

– 9 –

The rest of this paper organized as follows. Section II we
review related works for time series forecasting. Section I
II presents the definition and notations used in RNNs. We
explain the details of our proposed model in Section IV.
Then, experimental results explained in Section V. After that,
Section VI concludes the paper.

II. RELATED WORK
A. Conventional ARIMA model

ARIMA model is proposed by Box and Jenkins [2].
This model measures time series data over time. And this
model usually used in statistic and econometrics areas. The
following is the formula of ARIMA model.

xt = θ0 +φ1xt−1 +φ2xt−2 + · · ·+φpxt−p +

εt −θ1εt−1−θ2εt−2−·· ·−θqεt−q (1)

In this formula, xt represents the real time series value.
εt represents the random error. There have another two
parameters p and q. P is the corresponding to time series
of real value and q is the corresponding to MA model. And
εt represent the random errors. And the training time series
have the mean of zero and a constant variance. We use the
past observations and random error in this formula to forecast
future data.

According to this formula, in fact ARIMA model has three
types. One is AR model when q=0 in our formula. another
is MA model when p=0 in our formula. And if p and q both
are not equals to zero, it is ARMA model. Select real time
dataset belongs to which model is an important task.

ARIMA model is not very well in modeling nonlinear
relationship in time series. In this study, ARIMA modeling
is implemented via the EViews9 system.

B. Time Series Forecasting using Conventional Neural Net-
works

We all know ARIMA only can capture linear functions.
And ARIMA model is not good at real-world complex time
series data. So one model must could capture linear and
nonlinear functions exist in time series [6]. Artificial Neural
Networks (ANNs) is the approach that could solve this
problem. It can capture lots of nonlinear functions in dataset.

The motivation of ANN is from people’s brain. Artificial
Neural Network learn something by recognize example in
real world. It different with conventional programming. The
learning information is stored in weights which connect
different layers. One simple ANN include input layer, hidden
layer, and output layer.And every layer includes large of
neurons. Input layer corresponding to time series inputs.
In hidden layer, every hidden neuron has an activation
function. And output layer corresponding to the result of
ANN. Using ANN can solve many complex tasks such as
image recognition, speech recognition, machine translation
and so on.

In general, researchers usually use one hidden layer for our
time series forecasting tasks [19]. We use following formula
to train our neural network:

ht = f (β0 j +∑
p
i=1 βi jxt−i) (2)

yt = α0 +∑
q
j=1 α jht (3)

(yt) represents the output of neural network. From xt−1 to
xt−p are our input data corresponding to input neurons. And
α j(j = 0,1,2, ...,m) with βi j(i = 0,1,2...,n; j = 1,2, ...,m)
are the model’s weights. In general, weights and bias set
randomly by programmer at the beginning. n is the number
of input neuron, and m is the number of hidden neuron.
And f is activation function in every hidden neurons. The
activation function can be a linear function or a nonlinear
function. Sigmoid function is often used in artificial neural
networks,

f (x) = 1
1+exp(−x) (4)

III. RECURRENT NEURAL NETWORKS

A. Conventional Recurrent Neural Network

In the past decade, Recurrent Neural Networks (RNNs)
used in various tasks. Such as image recognition [16],
machine translation [12], and speech recognition [7] and so
on. This network not only can capture large of linear and
nonlinear relationships in time series but also could process
sequential dataset. One major different with ANNs is RNNs
could memory long-time information. However ANN just
memory short-term memory since the inputs in ANN are
independent. So researchers make some improvements in
the structure of ANNs. In fact RNNs include could unfold
by time. After unfolding we can see that lots of simple
neural network connected by hidden state. The information
of hidden state from two sides. One is from input information
at time t. And another is from hidden state at time t-1.
So this is why RNNs could memory long-term information.
And why RNNs could process sequential dataset. Look at
figure1, the right figure is unfolded by time t from left figure.
There has three layer. There are input layer, hidden layer, and
output layer. oiandxi are the output value and input value of
RNN. hi is the hidden state, it stores information of neural
network. U, W, and V are weights in RNNs.

si = f (Uxi +Wsi−1) (5)

f represent a linear or nonlinear function, In general using
tanh, ReLU and sigmoid function.

The output of RNNs oi at time step i is computed by
following formula:

oi = so f tmax(V si) (6)

B. Long Short-Term Memory

To solve the vanishing gradient and gradient explode
problems, researchers proposed complex Long Short-Term
memory (LSTM) [9] [5]. The structure of LSTM is more
complicated than conventional RNNs. LSTM need more
parameters in training process. In hidden layer of LSTM,

– 10 –

Fig. 1: Conventional RNN structure.

every hidden neuron has a memory cell. Memory cell stores
the memory in neural network at time t. Hidden layer also
has three different types gates. There are input gate, forget
gate and output gate. Figure2 shows the detailed information
of LSTM memory cell and three gates.

The function of these three gates is to manage the memory
cell process the inputs information and former information.
For example, if the input gate is not open, no inputs infor-
mation can input to neural network. And if forget gate is not
open, all the former information could be stored in memory
cell. And output gate controls which part of information in
memory cell can be output to next hidden state. This is
the formal LSTM. In fact researchers use slightly different
LSTM to their different tasks. The differences are very small.

Fig. 2: Structure of LSTM memory cell. Green circle repre-
sent three different types gates. At first, input gate controls
which part of input information should be input. g is the
activation function. After g function, the input information
stores in memory cell. The red circle represents memory cell.
The forget gate connect hidden state at time t-1 and hidden
state of time t. It controls which part of former information
should be input to memory cell at time t. Finally, output gate
controls which part of information in memory cell could be
transfer to next hidden state.

C. Gated Recurrent Unit

Another Recurrent Neural Network is called Gated Recur-
rent Unit (GRU). GRU also could solve vanishing gradient
and gradient explode problems. And GRU has ability to
memory long-term former information. The structure of GRU
is slightly different to LSTM. In hidden neuron, GRU only
has two gates. There are reset gate and update gate. The
function of reset gate is the same as input gate and forget
gate in LSTM. GRU combine this two function into one gate.
And the update gate controls how much previous information
input to memory cell at time t. The advantage of GRU is it
has fewer parameters than LSTM since the structure of GRU
is simple than LSTM. So the training time of GRU is faster
than LSTM. We can not say which RNN is better because it
depends on different type of tasks. If you have large data the
greater expressive power of LSTM may has a better choice.

IV. PROPOSED APPROACH

A. RNNs for time series prediction

By sorting according to timestamp, the input values can be
represented as [x1,x2, ...,xT−1,xT]. For single-factor approach
of stock high price prediction, xT is the stock high price
at time T corresponding one input neuron. For multi-factor
approach, xT includes 7 dimensions at time T correspond-
ing 7 input neurons. Given a stock price sequence x =
[x1,x2, ...,xr−1,xr](1≤ r≤ T), our model will give the output
y.

B. Training Stage

During the training stage, as shown in figure3, we set
a fixed size of time steps T for unfolding the network.
We use {[x1,x2, ...,xT−1] j, [x2,x3, ...,xT] j}N

j=1 as training data
and train the model in a sequence-to-sequence manner.
[x1,x2, ...,xT−1] j is the input and [x2,x3, ...,xT] j is the
corresponding true output. Backpropagation-Through-Time
(BPTT) [14] is used for propagating gradients of errors. Error
is computed using loss function:

loss = 1
n ∑

n
i=1(yi−oi)

2 (7)

(where oi is the predicted value and yi is the true value).
BPTT is a variant of backpropagation method used in train-
ing feedforward neural networks. Using BPTT, the error at
each time step is backpropagated to previous time steps. i.e.,
BPTT applies backpropagation method to unfolded RNN.

C. Test stage

The goal of test stage is to predict the next element
based on the information provided by a stock sequence with
the fixed size. In test dataset, it contains 100 test data to
compare with prediction data and compute its error using
the MAD method. We trained two types of models, one is
only using a single factor with one input neuron, and another
model trained by seven factors with seven input neurons. The
structure of this two models shown as figure4.

– 11 –

Fig. 3: Training process

Fig. 4: Single factor model and multi-factor model

V. EXPERIMENT

A. Data set

The stock dataset we consider contains stock price from
1990 to 2015, giving a total of 6109 observations. Each
record includes ten dimensions including stock index code,
date, open price, close price, low price, high price, volume,
money, change, and label. Usually, stock market data looks
like on figure4, where is displayed high prices of every day.
Dataset is split into two subsets for training and testing
usages. Training subset has 6009 records. And testing subset
has 100 records.

B. Data processing

Before the experiment, first, we have to normalize our in-
put data. The input vectors of the training data are normalized
in normalization function that all the feature have zero-mean
and unitary variance. Usually, data are scaled to be in the
range [−1,1]. Here we use Z-score normalization:

xnew = xold−mean√
var

(8)

Fig. 5: Stock dataset from 1990 to 2015

The single factor model and multi-factor model contain
one hidden layer including ten hidden units and only have
one output neuron. We compared the performance of Gated
Recurrent Unit (GRU) [4] cells and Long Short Memory
(LSTM) [9] cells. Since they both address the vanishing
gradient problem and able to learn for a long period. Our
model is trained with 20-time steps using BPTT. The model
is implemented using Tensorflow [1], which is a deep learn-
ing platform developed by Google. A GeForce GTX 1080Ti
GPU is used to boost the training speed.

C. Experimental Results

We compared prediction performance between conven-
tional ARIMA model and Recurrent Neural Networks model.
Evaluations are executed using MAD measurement. Table1
shows the evaluation results of five models in 100 test data.
Results show that for long-term forecasting (100 days) neural
network is much better than ARIMA model. And LSTM with
seven factors of stock’s high price is better than GRU model.

TABLE I:
COMEPARISON OF FIVE PREDICTION METHODS.

Method MAD
ARIMA 546.8176

GRU(7 factors) 311.8716
LSTM(7 factors) 76.8139

TABLE II:
FORECAST WITH DIFFERENT TIME PERIOD US-
ING LSTM(7 factors).

Time period MAD
7 days 31.4323

14 days 46.4498
30 days 38.6245
100 days 76.8139

From figure6, we observe that our multi-factor Recurrent
neural network model outperforms all another model. This
is an evidence showing that only one factor cannot catch
relationship between time series data. And add factors of
the stock price is one of a method to improve performance
prediction. We all know that LSTM and GRU are both can
remember long-term information. So we check the loss curve
show that why the performance of GRU is worse than LSTM

– 12 –

in our experiment. Figure7 compared the change of loss value
between LSTM model and GRU model. We can see that
after 100 iterations finally, the loss value of LSTM model is
lower than GRU model. So LSTM model’s prediction ability
is better than GRU model.

Fig. 6: Loss value changes of LSTM model and GRU model

Fig. 7: Compared prediction results of different models

And this paper also tests prediction capacity of LSTM with
seven factors in weekly steps, half monthly steps monthly
steps and 100 days steps. From table2 we can see that as
time goes on, accuracy decreased significantly.

VI. CONCLUSIONS

In this paper, we propose a multi-factor approach for
stock price prediction. For complex problems that have both
linear and nonlinear correlation structures. Only using linear
method ARIMA cannot capture nonlinear relationship. For
Recurrent neural networks, increase related factors of the
stock price can significantly improve learning ability. We
also compare prediction ability between GRU and LSTM
in the financial area, based on experiments, the performance
of LSTM is better than GRU. Therefore, we conclude that
our method is competitive with previously proposed methods
for handling time series forecasting.

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey
Irving, Michael Isard, et al. Tensorflow: A system for large-scale
machine learning. In OSDI, volume 16, pages 265283, 2016.

[2] G.E.P Box, G. Jenkins, Time Series Analysis, Forecasting and Control,
Holden-Day, San Francisco, CA, 1970.

[3] Cho, Kyunghyun, Van Merrienboer, Bart, Gulcehre, Caglar, Bougares,
Gethi, Schwenk, Holger, and Bengio, Yoshua. Learning phrase repre-
sentations using rnn encoder-decoder for statistical machine transla-
tion. arXiv preprint arXiv:1406.1078, 2014.

[4] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry
Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio.
Learning phrase representations using rnn encoder-decoder for sta-
tistical machine arXiv preprint arXiv:1406.1078, 2014.

[5] F. Gers, N. Schraudolph, and J. Schmidhuber,”Learning precise tim-
ing with LSTM recurrent networks,” Journal of Machine Learning
Research, vol.3,pp. 115-143,2002.

[6] J.G. De Gooijer, K. Kumar, Some recent developments in non-linear
time series modeling, testing, and forecasting, Int. J. Forecasting 8
(1992) 135-156

[7] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-
rahman Mohamed, Navdeep Jaitly, Andrew Senior, Vincent Van-
houcke, Patrick Nguyen, Tara N Sainath, et al. Deep neuron networks
for acoustic modeling in speech recognition: The shared views of four
research groups. IEEE Signal Processing Magazine, 19(6):82-97,2012.

[8] Hochreiter, S., and Schmidhuber, J. Long Short-Term Memory. Neural
Computation, 9(8):1735-1780, 1997.

[9] S. Hochreiter and J.Schmidhuber, ”Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[10] Hochreiter, S., Bengio, Y., Frasconi, P., and Schmidhuber, J. Gradient
flow in recurrent nets: the difficulty of learning long-term depen-
dencies. In Kremer, S.C. and Kolen,J.F. (eds.), A Field Guide to
Dynamical Recurrent Neural Networks. IEEE Press, 2001.

[11] E.D. McKenzie, General exponential smoothing and the equivalent
ARMA process, J. Forecasting 3 (1984) 333-344.

[12] Tomas Mikolov, Martin Karafiat, Lukas Burget, Jan Cernocky, and
Sanjeev Khudanput. Recurrent neural network based language model.
In Interspeech, volumn 2, page3, 2010.

[13] S. Thawornwong and D. Enke, Forecasting stock returns with artificial
neural Networks. In G. p. Zhang (ed) Neural Networks in Business
Forecasting (Chapter 3, pp. 47-49). Idea Group Publishing, 2004

[14] Paul J Werbos. Backpropagation through time: what it does and how
to do it. Proceeding of the IEEE, 78(10):1550-1560, 1990.

[15] H. wold, A Study in the Analysis of Stationary Time Series, Almgrist,
Wiksell, Stockholm, 1938.

[16] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aron Courville,
Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend
and tell: Neural image caption caption generation with visual atten-
tion. In International Conference on Machine Learning, pages 2048-
2057,2015.

[17] G.U. Yule, Why do we sometimes get nonsense-correlations between
time series? A study in sampling and the nature of time series, J.R.
Statist. Soc.89 (1926) 1-64.

[18] G. Zhang, E.B Patuwo, M.Y. Hu, A simulation study of artificial neural
networks the state of the art, Int. J. Forecasting 14 (1988) 35-62.

[19] G. Zhang, E.B. Patuwo, M.Y. Hu, Forecasting with artificial neural
networks: the state of the art, Int. J. Forecasting 14 (1998) 35-62.

– 13 –

