
A New Huffman Code for Accelerating GPU
Decompression (preliminary version)∗

Naoya Yamamoto, Koji Nakano, Yasuaki Ito, Daisuke Takafuji
Department of Information Engineering

Hiroshima University
Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan

Akihiko Kasagi, Tsuguchika Tabaru
Fujitsu Laboratories Ltd.

4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki, Kanagawa, 211-8588, Japan

Abstract—A Huffman code is a variable-length entropy code
used in data compression. The compression operation of a Huff-
man code can be done very efficiently on the GPU. However, the
decompression is very hard to parallelize, because the compressed
data have no separator to identify each variable-length codeword.
We present a Huffman Code with Gap Array (GHCA), which
accelerates the GPU decompression. The experimental results
using Geforce RTX2080Ti GPU shows that, the GHCA may have
at most 1.5% size overhead, but the decompression is 1.536-4713
times faster than the previously published GPU decoding for
Huffman codes.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

A Huffman code [1] is a prefix-free entropy code that
encodes a sequence X = x0x1 · · ·xn−1 of source symbols into
a sequence h(X) = h(x0)h(x1) · · ·h(xn−1) of codewords
such that the number of bits of h(X) is minimized, where h(x)
denotes the codeword of symbol x. Figure 1 shows an example
of a Huffman code. For example, a sequence X = DDABAB
of symbols is encoded into Y = 11011000010001. Also, Y is
decoded into Y . A Huffman code is represented by a binary
tree such edges to the left and right children from an internal
node have labels 0 and 1, respectively. Each leaf corresponds
to a symbol and the codeword can be obtained by picking
labels in the path from the root to it. Thus, a Huffman code
is a prefix code such that no codeword is a prefix of the other
codeword, and each codeword can be uniquely identified by
reading a codeword sequence from the beginning. A Huffman
code is one of the most frequently used compression scheme
used in many compressed file formats such as gzip, zip, png,
and jpeg. So, it is important to accelerate the encoding and
decoding tasks of Huffman codes.

Parallel encoding of Huffman codes are very easy [2].
By computing the prefix sums of the number of bits of
codewords corresponding to symbols in an input sequence, we
can determine the bit positions of codewords in the encoded
sequence. After that, the codeword of each symbol is written

∗This article is a preliminary work for presenting at a non peer-reviewed
workshop, the 10th International Workshop on Networking, Computing,
Systems, and Software (NCSS), held in Nagasaki, Japan, November 2019. The
full version will be submitted to a peer reviewed conference and/or journal.

source code A B C D E
codeword 00 01 10 110 111

A B C

D E

0

0 1 0 1

0 1

1

Fig. 1. An example of a Huffman code and the corresponding binary tree

in the corresponding position in parallel. Since the prefix-
sums can be computed very efficiently in the GPU [3]–
[5], Huffman code encoding can be done very efficiently.
On the other hand, parallel decoding of Huffman code is
very hard because a codeword sequence has no separator
to identify each codeword. Each codeword can be identified
only by reading codeword from the beginning. Quite recently,
Weissenberger and Schmidt [6], [7] showed an interesting
GPU implementation of decoding of Huffman codes called
GPUHD. Their idea is to use self-synchronization property [8]
of Huffman codes. More specifically, suppose that we start
decoding from some intermediate bit position of a codeword
sequence. It may be possible that the bit position is not the
beginning of a codeword, and the decoded symbol is not
correct. However, we may have a correct decoded symbol after
several wrong decoded symbols are output. Once we have a
correct decoded symbol, the decoded results after it are correct.
Using self-synchronization of Huffman codes, decoding of
Huffman codes can be done in parallel [6]. More specifically,
a codeword sequence is partitioned into equal-sized segments,
and a thread is assigned to each segment. A segment starts
to decode segments until it finds self-synchronization. In this
GPU implementation, each segment is decoded at least twice.
Also, in the worst case, the first thread cannot find self-
synchronization, and it must work for decoding all segments.

Bulletin of Networking, Computing, Systems, and Software – www.bncss.org, ISSN 2186-5140
Volume 9, Number 1, pages 91–93, January 2020

– 91 –



D D E C C C A B A B C B A

1 1 0 1 1 0 1 1 1 1 0 1 0 1 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 0

A E B B A A C B

g0 = 0 g1 = 1 g2 = 2 g3 = 0

A C

Y0 Y1 Y2

Fig. 2. Gaps of segments with b = 16 bits each

The main contribution of this article presents a new Huff-
man code for accelerating GPU decompression. Our idea is to
add a gap array to a codeword sequence during the process of
decoding. Suppose that a codeword sequence to be decoded
is partitioned into equal-sized segments. A codeword may be
separated into two adjacent segment. We call such codeword
an incomplete codeword. A gap of a segment is the number
of bits of the first incomplete word. A gap array is an array
storing the gaps of all segments. Figure 2 illustrates the gaps
of segments. The gap array can be computed very easily in
parallel during the encoding process. In most Huffman code
implementations, the number of codewords is limited to 16,
we can assume that a gap is an 4-bit integer. Thus, the size of
an gap array is very small if we use enough large segments.

II. HUFFMAN CODE WITH GAP ARRAY (HCGA)

The main purpose of this section is to present a Huffman
code with a gap array. As we will show later, decoding
of Huffman code is hard to parallelize. By means of self-
synchronization of Huffman codes, decoding can be par-
allelized. However, for malicious codewords, it redundant
decoding operations are performed and the decoding time is
much larger than the sequential decoding by a single CPU. In
this section, we will how a gap array which is attached to a
sequence of encoded codewords of a Huffman code.

Let X = x0x1 · · ·xn−1 be a sequence of n symbols
and Y = y0y1 · · · ym−1 be a sequence of m bits obtained
by encoding X by an Huffman code h. In other words,
Y = h(x0)h(x1) · · ·h(xn−1) holds. Suppose that a sequence
of codewords Y is partitioned into equal-sized segments of
b bits each. We introduce a new data structure that we call
gap array G. The gap array G is attached to the encoded
codewords Y to accelerate decoding of Y into X . The gap
array is an array of gaps of segments. A segment may have
an incomplete codeword, because there is a crossing codeword
between it and the previous segment. The gap of a segment
is the number of bits in the incomplete codeword. If it has no
incomplete codeword then the gap is zero. Let gi denote the
gap of segment Yi. Figure 2 illustrates gaps of segments of 16
bits each. We assume that a crossing codeword of neighboring
segments belongs to the latter one. Thus, a segment has
complete codewords and the following crossing codeword (if
exists). For example, the symbols of codewords in Y1 in the
figure are BABCBAAE.

A. Decoding of a Huffman code with a gap array

We use the Single Kernel Soft Synchronization (SKSS)
technique [9], [10] to accelerate decoding on the GPU. We

b bits

wb bits

Y0,0 Y0,1 Y0,w−1 Y1,0 Y1,1 Y1,w−1

Y0 Y1

subsegments

segments

Fig. 3. Segments and subsegments for decoding

partition Y into m
wb segments Y0, Y1, . . . , YL−1 of L = wb

bits each as illustrated in Figure 3, where w (≥ 32) and b be
parameters to be determined later. Each segment Yi is further
partitioned into w subsegments Yi,0, Yi,1, . . . , Yi,w−1 of b bits
each, We use a CUDA block with w threads is assigned to a
segment to decode it. Also, each thread of the CUDA block is
assigned to a subsegment and works for decoding it. Let c(i)
and c(i, j) denote the number of codewords in segment Yi and
subsegment Yi,j , respectively. Further, let p(i) = c(0)+c(1)+
· · ·+ c(i) and p(i, j) = c(i, 0) + c(i, 1) + · · ·+ c(i, j) be the
prefix-sums. Clearly, codewords in segment Yi are decoded in
x[p(i−1)], x[p(i−1)+1], . . . , x[p(i−1)+c(i)−1] and those in
segment Si,j must be coded in x[p(i−1)+p(i, j−1)], x[p(i−
1)+ p(i, j− 1)+1], . . . , x[p(i− 1)+ p(i, j− 1)+ c(i, j)− 1].
Thus, if all values of c and p are computed, we can deter-
mine positions of x for segment/subsegments where decoded
symbols are written.

The decoding can be done in only one kernel call, which
invokes multiple CUDA blocks. We use zero-initialized global
counter k in the global memory to assign serial numbers to
invoked CUDA block. More specifically, the first thread of
a CUDA block performs atomicAdd(&k,1), which adds 1 in
k as an atomic operation and return the value of k before
addition. The first threads of CUDA blocks receive 0, 1, 2,
. . ., and we call a CUDA block with the first thread receiving
i CUDA block i. Hence, it is guaranteed that, when CUDA
block i starts running, CUDA blocks 0, 1, . . ., i−1 have been
invoked. Note that it is not guaranteed that CUDA blocks are
invoked in the order of blockID given by kernel. In our GPU
Huffman decoding, it must be guaranteed to avoid deadlocks.

Each CUDA block i works for decoding segment Yi in 5
steps. In Steps 1 to 4, each CUDA block i computes the values
of c(i), p(i), p(i−1), c(i, j) and p(i, j), In particular, it writes
the values of c(i) and p(i) in the global memory, because the
other CUDA blocks may read them. In Step 5, each CUDA
block i decodes codewords in section Yi and write the decoded
symbols in x[p(i − 1) : p(i − 1) + c(i) − 1]. The details of
operations performed by each CUDA block i in Steps 1 to 5
are spelled out as follows:

– 92 –



TABLE I
THE PERFORMANCE OF ORIGINAL HUFFMAN CODE BY GPUHD AND HCGA BY OUR IMPLEMENTATION

Size Compression ratio Decompression time
File type description Mbytes GPUHD HCGA overhead GPUHD HCGA Speed-up
bible text Collection of sacred texts or scriptures 4.047 54.82 55.67 0.86% 0.348ms 0.080ms 4.357
enwiki xml Wikipedia dump file 1095 68.30 69.37 1.07% 46.530ms 10.779ms 4.317
mozilla exe Tarred executables of Mozilla 51.22 78.05 79.27 1.22% 3.356ms 0.689ms 4.871
mr image Medical magnetic resonance image 9.97 46.37 47.10 0.72% 0.592ms 0.336ms 1.764
nci database Chemical database of structures 33.55 30.47 30.95 0.48% 1.487ms 0.968ms 1.536
prime text 50th Mersenne number 23.71 44.12 44.81 0.69% 1.619ms 0.357ms 4.528
sao bin The SAO star catalog 7.251 94.37 95.85 1.47% 0.577ms 0.107ms 5.389
webster html The 1913 Webster Unabridged Dictionary 41.45 62.54 63.52 0.98% 2.093ms 0.467ms 4.482
linux src Linux kernel 5.2.4 871.3 70.23 71.32 1.10% 41.922ms 9.164ms 4.575
malicious text Never self-synchronizes until the end 1073 25.00 25.39 0.39% 92797ms 19.689ms 4713

Step 1 Each thread j (0 ≤ j ≤ wb−1) executes the sequential
decoding algorithm to decode all complete codewords and the
following codeword of Si,j to compute c(i, j). Since the gap
value of Si,j is available this can be done by simply executing
the sequential decoding algorithm.
Step 2 CUDA block i computes c(i) = c(i, 0)+c(i, 1)+ · · ·+
c(i, w − 1). This can be done by the prefix-scan algorithm in a
CUDA block [3] and thread 0 writes c(i) in the global memory.
Step 3 The first warp with 32 threads looks back previous 32
CUDA blocks i′ (i − 32 ≤ i′ ≤ i − 1) if they have written
in c(i′) and/or p(i′) in the global memory. More specifically,
they computes the maximum i′ such that

• p(i′) has been written by CUDA block i′, and
• c(i′ + 1), c(i′ + 2), . . . , c(i − 1) have been written by

CUDA blocks i′ + 1, i′ + 2, . . . , i− 1, respectively.
They repeat the same procedure until they find i′ satisfying
these conditions.
Step 4 CUDA block i computes p(i−1) = p(i′)+ c(i′+1)+
c(i′ + 2) + · · ·+ c(i− 1) and p(i) = p(i− 1) + c(i), and and
writes p(i) in the global memory.
Step 5 Each thread j of each CUDA block i executes the
sequential decoding algorithm for codewords in subsegment
Yi,j and decoded symbols are written in x[p(i, j−1) : p(i, j−
1) + c(i, j − 1)− 1].

III. EXPERIMENTAL RESULTS

This section shows experimental results of Huffman decod-
ing using Geforce RTX2080Ti GPU. We have evaluated the
performance of our HCGA and GPUHD [6], which decodes
original Huffman code. We have used various 10 data in
Table I. The size of a subsegment is b = 256 bits. The file
malicious is an intentionally generated compressed data that
never self-synchronize until the end. From the table, we can
see that the size overhead is less than 1.5%. Also, the running
time is of HCGA 1.536-5.389 times faster than GPUHD for
the first 9 data. The running time of GPUHD is quite large
because the first thread must work for decoding all codewords.
On the other hand HGA is quite fast and the speedup is 4713.

IV. CONCLUSION

We have presented a Huffman Code with Gap Array
(GHCA), which accelerates the GPU decompression. The
experimental results using Geforce RTX2080Ti GPU shows

that, the GHCA may have at most 1.5% size overhead, but the
decompression is 1.536-4713 times faster than the previously
published GPU decoding for Huffman codes.

REFERENCES

[1] D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” in Proc. of the IRE, vol. 40, no. 9, Sep. 1952, pp. 1098 – 1101.

[2] H. Rahmani, C. Topal, and C. Akinlar, “A parallel Huffman coder on
the CUDA architecture,” in Proc. of IEEE Visual Communications and
Image Processing Conference, Dec. 2014.

[3] M. Harris, S. Sengupta, and J. D. Owens, “Chapter 39. parallel prefix
sum (scan) with CUDA,” in GPU Gems 3. Addison-Wesley, 2007.

[4] D. Merrill and M. Garland, “Single-pass parallel prefix scan with
decoupled look-back,” NVIDIA, Tech. Rep. NVR-2016-002, March
2016.

[5] D. Merrill, “CUB : A library of warp-wide, block-wide, and device-wide
GPU parallel primitives,” https://nvlabs.github.io/cub/, 2017.

[6] A. Weissenberger and B. Schmidt, “Massively parallel Huffman de-
coding on GPUs,” in Proc. of International Conference on Parallel
Processing, Aug. 2018.

[7] A. Weissenberger, “CUHD - a massively parallel Huffman decoder,”
https://github.com/weissenberger/gpuhd.

[8] T. Ferguson and J. Rabinowitz, “Self-synchronizing Huffman codes
(corresp.),” IEEE Trans. on Information Theory, vol. 30, no. 4, pp. 687
– 693, Jul. 1984.

[9] S. Funasaka, K. Nakano, and Y. Ito, “Single kernel soft synchronization
technique for task arrays on CUDA-enabled GPUs, with applications,”
in Proc. International Symposium on Networking and Computing, Nov.
2017, pp. pp.11–20.

[10] Y. Emoto, S. Funasaka, H. Tokura, T. Honda, K. Nakano, and Y. Ito,
“An optimal parallel algorithm for computing the summed area table on
the GPU,” in Proc. of International Parallel and Distributed Processing
Symposium Workshops, Feb. 2018, pp. 763–772.

– 93 –


